Methodology

Results

Conclusions

References

Back-up

Machine Learning Particle Classifier for Water Cherenkov Detectors Hyper-Kamiokande neutrino experiment

Iñaki Erregue Álvarez-Buhilla

Supervisors: Dra M. Pilar Casado Dr Sergio Escalera

July 15, 2022

Iñaki Erregue Álvarez-Buhilla

Machine Learning Particle Classifier for Water Cherenkov Detectors

Universitat de Barcelona

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	000000	000		000

2 Methodology

3 Results

4 Conclusions

2 / 23

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	000000	000		000

2 Methodology

3 Results

4 Conclusions

5 Back-up

Figure 1: WCD scheme

- Subatomic elementary particles
- Mysterious but yet abundant
- Very elusive
- Key in the understanding of our Universe
- Indirect detection (Cherenkov effect)
- Binary classification: e^- vs. γ background

Introduction	Methodology	Results	Conclusions	References	Back-up
000					
Hyper-Kar	niokande and I				

Figure 2: Schematic of the IWCD detector [1]

- Based in Japan
- Expected to be completed in 2027
- Software including ML algorithms
- IWCD at 0.7-2 km from source
- h=6m, r=4m
- 536 mPMT modules (19 PMTs each)
- PMT records charge and time
- Use time as a performance booster

Figure 3: mPMT module design for HK [2]

Introduction	Methodology	Results	Conclusions	References	Back-up
000	•0000	000000	000		000

2 Methodology

3 Results

Introduction	Methodology	Results	Conclusions	References	Back-up
	0000				
Dataset					

- Simulated data (using WCSim)
- Around 3M events
- Balanced dataset
- Uniform distributions

Figure 4: Coordinate system

Figure 5: Event distributions (metadata)

Introduction	Methodology	Results	Conclusions	References	Back-up
	00000				
From Data	to Images				

Figure 6: PMTs in 3D tank

Figure 7: Original image size

Figure 8: mPMTs in unwrapped tank

Figure 9: mPMT charge sum for an event

Introduction	Methodology	Results	Conclusions	References	Back-up
	00000				
Time infor	mation				

Figure 10: Event distributions

$$ilde{q} = rac{q}{1+rac{|t-\mu_t|}{\sigma_t}}$$
 (1)

Approaches:

- As channel (charge-like)
- Embeded in scaling factor (1)
- Order pixel features chronologically

Add-ons:

- Scaling: hit standardization
- mPMT aggragated representation (mean and standard deviation)

Figure 11: Hybrid representation

Iñaki Erregue Álvarez-Buhilla

Introduction	Methodology	Results	Conclusions	References	Back-up
	00000				
Monte Carlo	Dropout				

Uncertainty measures:

- Variance
- Margin of confidence
- Entropy
- Mutual information

Bhattacharyya distance to discriminate correct and incorrect prediction populations:

$$D_B(\mathbf{p},\mathbf{q}) = -\ln\left(\sum_i \sqrt{p_i q_i}\right)$$

Figure 12: MCD concept [3]

Universitat de Barcelona

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	•00000	000		000

2 Methodology

3 Results

Introduction 000	Methodology 00000	Results 0●0000	Conclusions	References	Back-up 000		
Time infor	mation						
Considere	d experiments:		Configurat	ion:			
 Charge and/or Time 			• ResNet 18				
Hit standardization or None			• 20 epochs (\sim 9 hours)				
• mPMT agg. or 19 features			• Batch size: 512 • Adam with $k = 1 \times 10^{-4}$				

- Time as scaling factor
- Chronological pixel ordering

- Adam with lr = 1
- Fixed seed
- I transformation

Model	Loss	Accuracy	F_1 score	AUC	$\sigma_{\sf AUC}$
Q+Ts	0.6037	0.6713	0.6613	0.7332	0.0009
Qs+Ts	0.6042	0.6705	0.6601	0.7328	0.0014
Q+T	0.6106	0.6642	0.6481	0.7254	0.0013
Original	0.6272	0.6426	0.6201	0.7004	0.0010

Table 1: Average value of the loss function and performance metrics along with the standard deviation in the AUC.

Introduction 000	Methodology 00000	Results 00●000	Conclusions	References	Back-up 000
Dropout					

Figure 13: AUC values for different drop-neuron/channel dropout rates in training

Figure 14: AUC values for different drop-neuron/channel dropout rates in validation

Iñaki Erregue Álvarez-Buhilla	Universitat de Barcelona
Machine Learning Particle Classifier for Water Cherenkov Detectors	13 / 23

Figure 15: Bhattacharyya distance for different models and drop- neuron/channel dropout rates using the margin of confidence as uncertainty measure

$$egin{aligned} \mathcal{M} &= rac{1}{T}\sum_{t=1}^{T}| \mathcal{p}_{1}^{t} - \mathcal{p}_{0}^{t}| \ \mathcal{D}_{B}(\mathbf{p},\mathbf{q}) &= -\ln\left(\sum_{i}\sqrt{\mathcal{p}_{i}\mathcal{q}_{i}}
ight) \end{aligned}$$

Figure 16: Histogram of correct and incorrect predictions for the margin of confidence and its discriminating power using the Bhattacharyya distance

Introduction 000	Methodology 00000	Result 0000	••••	Conclusions 000	Re	terences	Back-up
Benchmarking	S						
	Model	Loss	Accuracy	F ₁ score	AUC	-	
	Proposed Original	0.5856 0.6271	0.6864 0.6427	0.6795 0.6203	0.7550 0.7007		

Table 2: Loss function evaluated in the test set along with some performance metrics for the original configuration and the proposed model

Figure 17: Row normalized confusion matrix for both original and proposed models

	Total	Electron	Gamma
Confidence (%) \mid	38	39,1	37

Table 3: Mean confidence values of test set predictions

Iñaki Erregue Álvarez-Buhilla	Universitat de Barcelona
Machine Learning Particle Classifier for Water Cherenkov Detectors	15 / 23

Figure 18: Proposed and original models compared in terms of performance for different features and confidence for both classes

Iñaki Erregue Álvarez-Buhilla

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	000000	● 00		000

2 Methodology

3 Results

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	000000	○●○		000
Conclusions					

- Time as a channel
- Hit standardization
- Hybrid representation: time mPMT aggregated
- Relative accuracy improvement of 7%
- Relative electron signal efficiency improvement of 16%
- Outputting margin of confidence in every prediction using MCD
- Enhanced and more stable behaviour towards different energy ranges, cone vertex positions and particle directions

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	000000	000		000

Thank you!

Introduction	Methodology	Results	Conclusions	References	Back-up

- T2K and beyond. Accessed: 2022-05-30. 2021. URL: https://t2k-experiment.org/beyond-t2k/.
- [2] Gianfranca De Rosa. "A multi-PMT photodetector system for the Hyper-Kamiokande experiment". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 958 (2020). Proceedings of the Vienna Conference on Instrumentation 2019, p. 163033. ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2019.163033. URL: https://www.sciencedirect.com/science/article/pii/S0168900219313968.
- Monte Carlo dropout. https://docs.aws.amazon.com/prescriptiveguidance/latest/ml-quantifying-uncertainty/mc-dropout.html. Accessed: 2022-07-05.

Introduction	Methodology	Results	Conclusions	References	Back-up
000	00000	000000	000		● 00

2 Methodology

3 Results

Figure 19: Map of the HK neutrino experiment with the main detector, the IWCD, the near detector and the source of neutrinos (J-Parc accelerator).

Figure 20: Sum of charge per mPMT for an electron event before and after padding

Figure 21: Sum of charge and average time detection per mPMT for a gamma event