
Log-Distributional Approach for
Learning Covariate Shift Ratios

Author: Guillermo Bernárdez Gil

1st Advisor: Carles Gelada
Google Brain, Montreal

2nd Advisor: Sergio Escalera
Departament de Matemàtiques i Informàtica
Universitat de Barcelona

A thesis presented for the degree of
Master in Artificial Intelligence

Facultat d’Informàtica de Barcelona (FIB)
Escola Tècnica Superior d’Enginyeria (URV)
Facultat de Matemàtiques i Informàtica (UB)

October 21, 2019

Abstract

Temporal Difference (TD) Learning algorithms classically learn value functions (sum of dis-
counted rewards) by solving for the fixed point that relates the value of one state with the
expected value of the following states. Other TD learning algorithms have been used to learn
multiplicative value functions, which also have a fixed point solution, even though it has been
shown that learning of these multiplicative value functions suffers from higher variance and
looser convergence guarantees than additive ones. One potential approach to solving these
issues would be to learn in log space, turning the multiplicative value function into an additive
one. Unfortunately, it is easy to show with Jensen’s inequality that the exponential of the
log fixed point does not correspond to the multiplicative fixed point.

On the other hand, Distributional Reinforcement Learning (RL) has been used to learn
the return distribution (return is the sum of future discounted rewards). Although it has
been shown that it mainly plays an auxiliary task role for representation learning, we propose
that distributional fixed points could play a much more fundamental role to learning non
additive value functions. In the case of distributional multiplicative value functions, learning
the additive fixed point in log space and exponentiating leads to the correct solution.

In particular, we study this approach in the case of the learning process of the the ra-
tio between stationary distributions of two policies (Covariate Shift Ratio), which defines a
multiplicative value function. In our theoretical analysis we are able to get stronger conver-
gence guarantees than any previous work on the Covariate Shift, and we develop a practical
framework using the Arcade Learning Environment (ALE) to evaluate it. As a result, we ob-
served good trends in the learning of the ratio, obtaining similar performance than previous
state-of-the-art works in the area.

i

Aknowledgements

I would first like to thank my advisor Carles Gelada for all his guidance and implication, I
am gratefully indebted to him for everything he has taught me along this exciting journey.

I would also like to acknowledge my advisor Sergio Escalera for his passionate participation
and support, always providing very valuable advice.

Finalmente, quiero dedicar estas últimas palabras directamente a mi familia, especial-
mente a mis padres y abuelos: gracias por estar siempre a mi lado, gracias por apoyarme
incondicionalmente en todos mis proyectos. Esto va por y para vosotros.

ii

Contents

1 Introduction 1

2 Distributional Reinforcement Learning 3

2.1 Reinforcement Learning Setting . 3

2.2 Towards a Distributional Reinforcement Learning 8

2.3 Approximation Framework in the Distributional Setting 10

2.4 Categorical Distributional Reinforcement Learning 12

2.4.1 Tabular Representation . 14

2.4.2 Linear Function Approximation . 14

3 Covariate Shift Ratio 19

3.1 Off-Policy Learning Setting . 19

3.2 Covariate Shift Approach . 20

3.3 Discounted COP-TD . 22

4 Distributional Covariate Shift Approach 25

4.1 Distributional DCOP-TD . 25

4.2 Log-Distributional Covariate Shift Approach 27

4.3 Categorical Log-Distributional DCOP-TD . 29

4.3.1 Tabular Representation . 30

4.3.2 Linear Function Approximation . 31

5 Implementation 32

5.1 Non-linear Function Approximation . 32

5.2 Replay Memory . 34

5.3 Distributional Setting . 34

5.4 Categorical Distributional DCOP-TD . 36

5.5 Categorical Log-Distributional DCOP-TD . 38

6 Evaluation of the Proposal 39

6.1 Multiplicative vs. Additive Value Functions 40

6.2 Log-Distributional Approach . 41

6.3 Qualitative Evaluation of the Learned Ratios 42

6.4 Measuring Off-policy Degree . 45

7 Conclusions 47

iii

Appendix 48

A.1 Contraction Mappings . 48

A.2 Mixture Distributions . 50

A.3 Measures over Distributions . 51

A.3.1 Kullback-Leibler Divergence . 51

A.3.2 Wasserstein . 51

A.3.3 Cramér . 51

A.4 Use of the Arcade Learning Environment . 52

References 56

iv

1 Introduction

The concept of Reinforcement Learning[1] (RL) emerged with the objective of designing agents
able to deal with sequential decision problems by themselves, in the sense that they are not
told which actions to take; instead, they must learn good policies by optimizing a cumulative
future reward signal.

In particular, one of the main challenges that a RL must face is the trade-off between
exploration and exploitation[1]: to maximize the reward, it has to exploit its previous expe-
rience while exploring for possible better action selections. The risen of this dilemma, which
is not present in other kinds of learning (neither supervised nor unsupervised setting have to
deal with it), has already linked the theory of RL with psychological[2] and neuroscientific[3]
perspectives on animal behaviour.

In fact, the vast majority of RL algorithms and approaches, if not all, try to model how
humans and other animals optimize their control of an environment; great examples of that
are the widely use in RL of Temporal Difference (TD) learning[4], which is based on how living
beings deal with rewards, as well as the neurological inspiration behind Deep Reinforcement
Learning[5] implementations.

Despite the high number of RL real-world applications that already exist (e.g. [6, 7, 8,
9, 10]), most research of the community is still focused on getting new insights into how RL
agents should be implemented to improve both their understanding of the environment and
their learning capabilities[11, 12, 13, 14, 15, 16]. In particular, new contributions are com-
monly benchmarked using very well-defined domains -usually human games- that facilitate
their comparison with other approaches.

One relevant -and relatively recent- contribution was the Distributional RL setting pre-
sented in [17], which attained state-of-the-art performance on several RL benchmarks[18, 19].
This work motivated a change of paradigm for solving RL problems: for the agent to guide its
behaviour, they argued the importance of it learning the full distribution of return -meaning
by return the discounted sum of rewards- instead of only its expectation -as the typical value-
based RL does[1].

Even though some distributional approaches were previously proposed[20, 21], it was not
until [17] was published that the study of distributional-based solutions actually became a
very active focus of research within the RL community[18, 22, 23, 24], providing evidence
that they positively impact the RL approximate setting. However, despite the fundamental
theoretical results already shown[25, 26], there is still much work to do in understanding the
ins and outs of such a distributional perspective, and we believe that its implications might
go beyond the task of representation learning.

In particular, distributional-based RL introduced the notion of distributional Bellman
equations[17], which are encoded in terms of mixture distributions[25]. A quick analysis
of distributional learning reveals that the corresponding distributional fixed points satisfy a
promising property for learning non-additive value functions.

In the context of off-policy RL learning[1], where the agent learns from data that might
not be drawn from its current policy, the Covariate Shift approach presented in [27] precisely
defines a TD-based, multiplicative update rule for learning the ratio between the stationary
distributions generated by two policies.

It is well documented that off-policy learning suffers from divergence issues when combined
with function approximation and bootstrapping (e.g. TD methods) -authors of [1] named
this context as the ’deadly triad’ of RL. According to [4], the main reason why convergence

1

1. Introduction Master Thesis

guarantees break under this regime relies in the fact that usual Bellman learning rules require
from updating states according to the stationary distribution of the learned policy (target
policy), whereas the sampling is performed using data that follows another policy (behaviour
policy).

In short, the aforementioned covariate shift method manages this problem by reweighting
updates according to the ratio of the target and behavior stationary distributions, in such a
way that, in expectation, we recover a sampling under the target stationary distribution[27].
In practice, this reweighting can be easily implemented through a prioritized experience replay
scheme[28] where priorities are estimated ratios.

The original Covariate Shift approach, though, only showed weak convergence guarantees,
and was difficult to implement together with deep reinforcement learning. These issues were
addressed in [29], where both the stability and the applicability of the method were improved
by slightly modifying some minor aspects of the algorithm.

Nevertheless, even with the improved version of [29], the resulting methodology still lacks
from the desired convergence guarantees, and the updates suffers from a high variance. The
main reason of this happening might relate with the fact that the learning rule is multiplica-
tive; in fact, if rewriting it as an additive value function were possible, we strongly believe
that a better learning behaviour would be obtained.

Motivation and Goals

The connection between TD-based distributional learning rules and mixtures distributions,
made in [25] for the case of distributional-based RL, motivated us to further investigate what
implications it might have. Surprisingly, one can easily infer, through mixture properties, that
distributional learning allows to project the learning rule into another space (by applying a
continuous, invertible function), find the fixed point in that space, and get the correct solution
by simply reverting the projection of that fixed point; Jensen’s inequalities, in contrast,
prevents from a similar result in value-based learning processes. This property, as mentioned
before, is specially appealing when dealing with non-additive value functions.

In particular, we are interested in defining a theoretically-grounded distributional approach
for learning covariate shift ratios, showing how we can turn the multiplicative behaviour of
their original update rule into an additive one by simply moving to the log space. Besides
studying the theoretical convergence guarantees of this precise distributional approach, we
are also concerned about providing evidence of its practicability, so another goal is to develop
an algorithmic implementation of the method as well as design an experimental set up for its
evaluation.

Structure of the Report

In Section 2 we provide a thorough review of Distributional Reinforcement Learning, detailing
the fundamental theoretical results on this area. Section 3 is devoted to introduce the covari-
ate shift approach, paying special attention to its convergence guarantees with linear function
approximation. In section 4 we present our main contribution: a theoretical-grounded, dis-
tributional framework for learning covariate shift ratios in the logarithmic space (i.e. with an
additive update rule). Section 5 describes the details of our implementation, which we assess
in Section 6 by showing and analyzing the results of the different experiments performed.
Finally, Section 7 summarizes the conclusions as well as the possible next steps to take.

2

2 Distributional Reinforcement Learning

The aim of this section is to provide a detailed review of the main concepts and theoret-
ical results of Distributional Reinforcement Learning, focusing on those approaches where
learned distributions are approximated within a categorical parametric family -just as the
first renowned distributional-based RL algorithm (C51) presented in [17].

Hence, here we revisit some relevant papers on this area, collecting and explaining their
main contributions. Among all consulted references, we make special allusion to the works of
[17], responsible of making distributional RL so popular by introducing C51 to the community;
[25], a thorough theoretical analysis of categorical distributional RL algorithms; and [26],
which presents the first converge result of a categorical distributional-based approach together
linear function approximation.

The order of the section is as follows: first, we introduce the general Reinforcement Learn-
ing setting. Second, we describe how we go beyond the expected value-based RL to its dis-
tributional perspective. Third, we present a characterization of distributional RL algorithms
according to the approximations that are taken. Finally, we present the main convergence
guarantees of Categorical Distributional RL that have been found so far by the community,
both in the tabular case and with linear function approximation.

Remark. It is worth noting that having clear the concepts of contraction mappings and
mixture distributions are key for fully understanding some important aspects of the theory
presented both in this section and in the following ones. For that reason, we encourage
readers that are not familiarized with these notions to visit the Appendix; in particular, we
characterize contraction mappings in Appendix A.1, describe mixture distributions and their
properties in Appendix A.2, and also provide the definition of some relevant metrics over
distributions in Appendix A.3.

2.1 Reinforcement Learning Setting

Let us begin by characterizing the RL framework.

We consider an agent interacting with an environment in the standard setting[4]: at each
step t, the agent selects an action at based on its current state st, to which the environment
responds with a reward rt and then moves to the next state st+1. This interaction is modeled
as a time-homogeneous Markov Decision Process (S,A, r, P, γ), where

• S and A are the state and action spaces, respectively. It is assumed that both are finite,
with n := | S |;

• P is the transition kernel, st+1 ∼ P (·|st, at); the Markov assumption states that
P (st+1|st, at, st−1, at−1, ...) = P (st+1|st, at);

• rt represents the immediate reward given by the environment after taking action at
being in state st. These rewards are considered to be sampled from a reward distribution
R(s, a), i.e. rt ∼ R(st, at);

• γ is the discount factor.

A policy π maps each state to a probability distribution over the action space, at ∼ π(·|st).
In particular, a stationary policy1 π defines in turn a Markov Reward Process (MRP), that

1By stationary we simply mean that we consider the same policy for all time-steps.

3

2. Distributional Reinforcement Learning Master Thesis

is, a Markov Chain with reward associated with every transition. The transition function of
this Markov chain is the so-called state-to-state transition matrix P π ∈ Rn×n, whose entries
are

P π
s,s′ := Pπ(s

′|s) = Probπ(st+1 = s′|st = s) =
!

a∈A

π(a|s)P (s′|s, a),

and whose n-th power, (Pπ)
n, encodes the transition function across n time-steps. Regarding

the reward of the MRP, it is given by the expected immediate reward vector rπ ∈ Rn, with

rπs := rπ(s) = Ea∼π(·|s) [R(s, a)]

A stationary distribution of a Markov Chain with state space S and transition matrix P ,
if exists, is defined as some vector d ∈ ∆(S), where ∆(S) ⊂ Rn accounts for the simplex
over states2, that satisfies d = P Td; generally speaking, stationary distributions describe the
proportion of time that the chain spends in each state s ∈ S over a long run. In our particular
case, under ergodicity and some other mild conditions[30], we can guarantee that a stationary
policy π induces a unique stationary distribution of its associated MRP after enough time-
steps (i.e. in the limit t → ∞); it is referred to as the stationary distribution of the policy π.
and denoted by dπ.

Back to the general MDP, another relevant concept is that of the return, usually defined
as simply the sum of all received rewards along a certain agent trajectory {(st, at, rt)}Tt=0.
In practice, however, it is common to consider its discounted counterpart, which uses the
discount factor γ to give higher weight to near rewards than those received further in the
future:

T!

t=0

γtrt

It is worth noting that the main reason to contemplate discounted returns with γ < 1 is
purely mathematical: this way infinite reward sums (when T → ∞) become finite, which
helps proving the convergence of certain RL algorithms.

The estimation of an agent’s discounted return lead us to the ubiquitous notions of both
action and state value functions. On the one hand, the action value function is defined as the
expected discounted return from a state-action pair by following a certain policy π, i.e.

Qπ(s, a) = Eπ

" ∞!

t=0

γtR(st, at)

####s0 = s, a0 = a

$
(2.1)

From previous expression 2.1, a Bellman’s equation for the action value function can be easily
derived:

Qπ(s, a) = E [R(s, a)] + γ E
π

" ∞!

t=1

γtR(st+1, at+1)

####s0 = s, a0 = a

$

= E [R(s, a)] + γ
!

s′

P (s′|s, a)
%
E
π

" ∞!

t=1

γtR(st+1, at+1)

####s1 = s′

$&

= E [R(s, a)] +

γ
!

s′

P (s′|s, a)
!

a′

π(a′|s′)
%
E
π

" ∞!

t=1

γtR(st+1, at+1)

####s1 = s′, a1 = a′

$&

= E [R(s, a)] + γ E
s′∼P (·|s,a)
a′∼π(·|s′)

'
Q(s′, a′)

(

(2.2)

2d ∈ ∆(S) =⇒ dT e = 1, d ≥ 0, denoting by e ∈ Rn the vector of all ones.

4

MAI 2.1. Reinforcement Learning Setting

Moreover, among all action value functions, there exists at least one optimal action value
function Q∗ in the sense that it has the higher possible value for all states:

Q∗(s, a) := max
π

Qπ(s, a).

On the other hand, the state value function is defined as the expected sum of discounted
rewards from a state by following π, and also gives rise to a Bellman’s equation:

V π(s) = Eπ

" ∞!

t=0

γtR(st, at)

####s0 = s

$

= E
a∼π(·|s)

[R(s, a)] +

γ
!

a

π(a|s)
!

s′

P (s′|s, a)
%
E
π

" ∞!

t=1

γtR(st+1, at+1)

####s1 = s′

$&

= rπ(s) + γ E
s′∼Pπ(·|s)

'
V π(s′)

(

(2.3)

Analogously, there also exists an optimal state value function V ∗ so that, for all states,

V ∗(s) := max
π

V π(s).

In vector notation, we have Qπ ∈ RS ×A and V π ∈ RS , so the usual Euclidean L2 norm
could be used for comparing two value functions. In practice, however, one might be interested
in giving more importance to some states than others -for instance. because they occur more
frequently. For that reason, as discussed in [1], it is common to contemplate a distribution
d ∈ ∆(S) (usually the stationary distribution dπ) to specify the degree to which we care
about different states being accurately valued, and then define the distance between any pair
of value functions using the d-weighted L2 norm3; e.g.

‖V − V ′‖2d =
!

s∈S

d(s)(V (s)− V ′(s))2

for any V, V ′ ∈ RS .

We emphasize that the objective of RL is to find a policy that, given any considered state
s ∈ S, always select an action that maximize the expected (discounted) return; such a policy
is called an optimal policy, an we denote all of them (there might be more than one) by π∗.
In particular, note that finding the optimal policy is equivalent to finding the policy with an
optimal value function, in the sense that for all states s ∈ S

π∗ = max
π

V π(s), Prob(argmaxaQ
∗(s, a) ∼ π∗(·|s)) = 1

In fact, most RL algorithms actually make use of value functions to estimate the optimal
policy, and they do so by applying operators based on Bellman’s equations 2.2 and 2.3. As
we will see with the action value Bellman equation case, they play a fundamental role in
several key aspects of the learning process.

3In general, given an arbitrary d ∈ Rk, the d-weighted L2 norm of any vector x ∈ Rk is defined as
‖x‖2d :=

!k
i=1 d(i)x(i)

2.

5

2. Distributional Reinforcement Learning Master Thesis

Bellman Operators

Typically, one can distinguish two different settings among -and within- RL algorithms. On
the one hand, we may be interested in computing the value function, assuming the current
policy π is fixed, so as to evaluate that policy (policy evaluation). On the other hand, we
might want to actually improve the current policy (control setting). Both settings have been
extensively analyzed (e.g. [1]) and have associated their corresponding Bellman operators.

Remark. We present and briefly analyze Bellman operators in the case of action value func-
tions, but the shown development is analogous for state value functions V π.

In the context of policy evaluation, considering state-action value functions Qπ as vectors
in RS ×A, the Bellman operator T π : RS ×A → RS ×A is defined as

T πQ(s, a) := E [R(s, a)] + γ E
s′∼P (·|s,a)
a′∼π(·|s′)

'
Q(s′, a′)

(
(2.4)

Such operator is useful to describe the expected behaviour of popular learning algorithms
(e.g. SARSA), and as stated in [4] satisfies a very interesting property: T π is a contraction
mapping (see Appendix A.1) on the dπ-weighted Euclidean distance, i.e.

‖T πQ− T πQ′‖dπ ≤ γ‖Q−Q′‖dπ for any Q,Q′ ∈ RS ×A.

In particular, this fact allows to demonstrate, by simply applying Banach’s Fixed-point The-
orem, that the process Qt = T π Qt−1, for some initial value Q0, converges exponentially to
Qπ as t → ∞.

Regarding the control setting, where the goal is to improve the current policy π, a Bellman
optimality operator T ∗ : RS ×A → RS ×A is defined as follows:

T ∗Q(s, a) := E [R(s, a)] + γ E
s′∼P (·|s,a)

'
max
a′∈A

Q(s′, a′)

(
(2.5)

This operator, for instance, describes the expected behaviour of Q-learning. Moreover, as it
was shown in [4], T ∗ is also a contraction mapping on the dπ-weighted Euclidean distance,
and hence the sequence {Qt}, where Qt = T ∗ Qt−1, converges exponentially to a fixed point,
which is precisely the optimal value function Q∗[4].

However, in spite of the provided depiction of both settings, we emphasize that policy
evaluation is also used in most policy improvement algorithms. This is the main reason why,
along the following theoretical development, we will be more focused on the study of Bellman
operators than on their optimality counterparts. By doing that, we simplify our dissertation
and avoid the repetition of some tedious results, but we also expect that strong convergence
guarantees of T π might correlate with a good-bahaved T ∗.

Function Approximation

In most RL problems, the large size of their state spaces makes unfeasible the so-called tabular
case, where we can learn separately either the value V π of each state or the value Qπ of each
state-action pair, depending on the value function considered. In these cases, we need to get
value function estimates through function approximators, and among them it is common to
consider a linear function approximation.

6

MAI 2.1. Reinforcement Learning Setting

Remark. We will use state value function V π to explain some basic aspects of RL with linear
function approximation since its related notation is slightly simpler than that of Qπ. However,
the same exact comments and conclusions apply for action value functions.

In the case of state value functions, a typical linear function approximation uses a linear
mapping from states to features φ : S → Rk. In these cases, the approximate action value
function at a state s can be expressed as the inner product of a feature vector with a vector
of weights θ ∈ Rk:

V̂ (s) = φ(s)T θ (2.6)

which can be written as V̂ = Φθ in vector notation, being Φ ∈ Rn×k the matrix with φ(s)
as row vectors. Under this approximation regime, the semi-gradient update rule for TD
learning[1] learns an estimation of V π stochastically from sample transitions; given a starting
state s ∈ S, a successor state s′ ∼ Pπ(·|s), and a step-size parameter α > 0, this update is
defined as

θ ← θ + α
)
rπ(s) + γφ(s′)T θ − φ(s)T θ

*
φ(s) (2.7)

This gradient descent-based rule is precisely designed to deal with the fact that most
value functions might not be representable by the considered function approximation. In
fact, under the described linear approximation regime, there is the extra task of, given any
non-representable value function V , finding its closest representation in the subspace WΦ :=
{V ∈ Rn : V = Φθ} of representable value functions. As we will see, this can be modeled by
a projection step.

We recall that the distance between two value distributions V, V ′ ∈ Rn is typically defined
as the d-weighted Euclidean distance for some d ∈ ∆(S). Then, it can be defined a projector
operator Πd : Rn → WΦ so that, given any value function V , it provides with its closest
representable function according to the d-weighted norm:

ΠdV := argminV̂ ∈WΦ
‖V − V̂ ‖2d.

Each time that the update rule 2.7 is applied, it performs a step towards the minimization
that represents the projection operator Πd.

Therefore, the expected behaviour of 2.7 is actually described by the projected Bellman
operator ΠdTπ, a combination of the usual Bellman operator with the projection Πd onto
the span of Φ[31]. In fact, any convergence analysis requires now the consideration of the
projected Bellman equation V̂ π = ΠdTπV̂

π.

We emphasize that convergence of Πd T π is only guaranteed when the projection weights
are d = dπ. As usual, the proof is done by first showing that the combined operator ΠdπT

π is
a contraction in the dπ-weighted Euclidean norm, i.e. for any two value functions V, V ′ ∈ Rn

‖ΠdπT
πV − ΠdπT

πV ′‖dπ ≤ γ‖V − V ′‖dπ
and then applying the Banach’s fixed-point theorem to the sequence V̂t := ΠdπT

πV̂t−1 (with
some initial V̂0 ∈ WΦ).

Remark. As it is shown in [31], for a combined operator to be a contraction in a certain
metric, each of the operators involved must be a contraction in that same metric. In our
case, the fact that T π is only a contraction in the dπ-weighted L2 norm clearly conditions the
choice of Πdπ , as well as the metric used to prove the contractibility of Πd T π.

However, it is important to note that, even with convergence guarantees, the true value
function V π might not lie in the representable subspace WΦ, so our estimate V̂ π may always
differ from V π to some extent.

7

2. Distributional Reinforcement Learning Master Thesis

2.2 Towards a Distributional Reinforcement Learning

Now that we have introduced the standard expected-based RL setting, we go a step further
and present its distributional counterpart, which has become the focus of many RL research
since the publication of [17] -some examples are [25, 26], but the list of related papers is much
larger.

This represents a change of paradigm: Distributional RL cares about the whole distribution
of returns -instead of just their expected values- to find the optimal policy. Hence, the first
key point of [17] is to redefine the RL framework from a distributional perspective, i.e. so as
to be able to deal with proper distributions.

Notation. Given a random variable U , we denote its probability density function (pdf) as
fU . Moreover, we indicate by a distributional equation U

D
= V that U is distributed according

to the same law as another random variable V ; in particular, this implies fU = fV .

However, authors of the cited work interestingly show that distributions of returns also
satisfy a Bellman equation, and therefore can be computed in a very similar manner than
Q-values. In particular, they define the following distributional Bellman equation

Zπ(s, a)
D
= R(s, a) + γZπ(S ′, A′), (2.8)

where

• Zπ : S ×A → Z is the value distribution, a mapping from state-action pairs to distri-
butions over returns by following policy π. As stated in [17], its expectation is the value
Qπ

Qπ(s, a) := E[Zπ(s, a)] (2.9)

We will also call it the return distribution.

• (S ′, A′) ∈ S ×A is the next state-action random variable: S ′ ∼ P (·|s, a), A′ ∼ π(·|S ′)

• R(s, a) ∈ Z is the random reward, or equivalently the reward function. Note that now
we are dealing with it as an explicit random variable.

• Zπ(S ′, A′) ∈ Z is the random return over the random next state-action following π.
This notation implies that all possible next state-action pairs need to be considered as to
generate this return distribution. Thus, Zπ(S ′, A′) may be seen as a mixture distribution
(see Appendix A.2) of the distributions Zπ(s′, a′), where s′ and a′ are sampled from
(S ′, A′):

fZπ(S′,A′)(z) =
!

s′

P (s′|s, a)
!

a′

π(a′|s′)fZπ(s′,a′)(z) (2.10)

Its expected value, using 2.9, can be then expressed as:

E[Zπ(S ′, A′)] =

+ ∞

−∞
z
!

s′

P (s′|s, a)
!

a′

π(a′|s′)fZπ(s′,a′)(z)dz

=
!

s′

P (s′|s, a)
!

a′

π(a′|s′)
+ ∞

−∞
zfZπ(s′,a′)(z)dz

=
!

s′

P (s′|s, a)
!

a′

π(a′|s′)E[Zπ(s′, a′)]

= E
s′∼P (·|s,a),a′∼π(·|s′)

'
Qπ(s′, a′)

(

(2.11)

8

MAI 2.2. Towards a Distributional Reinforcement Learning

Note that the classical Bellman’s equation 2.2 for the action value Q can be easily recovered
by using 2.9 and 2.11 when taking the expected value over its distributional version 2.8:

Qπ(s, a) = E[Zπ(s, a)]

= E[R(s, a)] + γ E[Zπ(S ′, A′)]

= E[R(s, a)] + γ E
s′∼P (·|s,a),a′∼π(·|s′)

'
Qπ(s′, a′)

((2.12)

Finally, looking for some clues of what actually the random return Z represents, we expand
its density function as follows:

fZπ(s,a)(z) = fR(s,a)+γZπ(S′,A′)(z)

=
!

s′

P (s′|s, a)
!

a′

π(a′|s′)fR(s,a)+γZπ(s′,a′)(z)

=
!

s′

P (s′|s, a)
!

a′

π(a′|s′)fR(s,a)+γ(R(s′,a′)+γZπ(S′′,A′′))(z)

=
!

s′

P (s′|s, a)
!

a′

π(a′|s′)
!

s′′

P (s′′|s′, a′)
!

a′′

π(a′′|s′′)

fR(s,a)+γR(s′,a′)+γ2Zπ(s′′,a′′)(z)

=
!

s1

P (s1|s0, a0)
!

a1

π(a1|s1) · · ·
!

st

P (st|st−1, at−1)
!

at

π(at|st)

f!t
i=0 γ

tR(st,at)
(z)

(2.13)

where we have repeatedly used Property 2 of mixture distributions (Appendix A.2).

According to 2.13, Zπ(s, a) can be interpreted as a convex combination of the sum of
discounted reward distributions of all possible agent trajectories starting at the state-action
(s, a) and following policy π from then on, each weight corresponding to the probability of
that precise trajectory. It is important to note that Zπ encodes the intrinsic randomness of
the agent’s interactions with its environment; we should avoid considering it as a measure of
uncertainty about the environment itself.

Moving to the policy evaluation setting, now we are interested in studying the behaviour
of a distributional version of the policy evaluation operator defined in 2.4. Establishing the
transition operator P π : Z → Z, where

P πZ(s, a)
D
:= Z(S ′, A′),

the distributional Bellman operator T π : Z → Z is defined as4

T πZ(s, a)
D
:= R(s, a) + γP πZ(s, a); (2.14)

We emphasize that three sources of randomness are involved in the compound distribution
T πZ, i.e.

1. Randomness in the reward R,

2. Randomness in the transition P π, and

3. Randomness in the next state-value distribution Z(S ′, A′),
4Note the abuse of notation, as the Bellman operator of value-based RL was also denoted by T π.

9

2. Distributional Reinforcement Learning Master Thesis

which together make this distributional Bellman operator fundamentally different to the ex-
pected value-cased one (Equation 2.4).

Now that we work in the space of distributions P(R), we note that convergence of distri-
butional operators can also be assessed in terms of the contraction mapping theory, although
it involves the non-trivial search of a metric over distributions on which the operator is a
contraction. In the case of the distributional Bellman operator, though, some research has
been already done on this task:

• The Kullback-Leibler (KL) divergence, one of the most widely used measures over dis-
tributions, is not an option for T π to be a contraction mapping[25].

• In [17], authors demonstrate that T π is a γ-contraction in the supremum-Wasserstein
metric d̄p.

• In [25], it is proven that T π is also a contraction in the supremum-Cramér metric ℓ̄2, as
well as in the dπ-weighted Cramér ℓ2dπ .

Remark. We refer to the Appendix A.3 so see the definition of the mentioned measures/metrics
over distributions.

Hence, provided we use the metrics d̄p, ℓ̄2 or ℓ2dπ , it can still be shown by applying Banach’s
Fixed-point theorem that the repeated application of the distributional Bellman operator -i.e.
the process Zt = T π Zt−1, for some initial distribution Z0- converges to the value distribution
Zπ[17, 25].

However, more difficulties arise in the control setting when dealing with this distributional
perspective; as stated in [17], while every optimal policy attain the same value Q∗ in the
expected-valued case, there might be many optimal value distributions. Considering the set
Π∗ of optimal policies, an optimal value distribution is defined as the value distribution of an
optimal policy. Hence, the set of optimal value distributions is Z∗ := {Zπ∗

: π∗ ∈ Π∗}.
Note that an optimal value distribution must match the full distribution of returns under

some optimal policy, so that not all value distributions with expectation Q∗ are optimal.
Under these conditions, the distributional Bellman optimality operator T does not have the
same strong convergence guarantees of the policy evaluation operator[17, 25]: T is not a
contraction in any usual metric between distributions, and its convergence to the set of optimal
value distributions is weak.

2.3 Approximation Framework in the Distributional Setting

We should we aware that the full computation of the distributional Bellman operators on
return distribution functions is generally either impossible (as we typically do not have ac-
cess to the MDP dynamics, but to merely sample transitions) or infeasible (since the value
distribution cannot be stored exactly in the general case).

This lead us to the design of several key approximations which are required to implement
practical and scalable distributional RL algorithms[25]:

Distribution Parametrisation

Due to the fact that the full space of probability distributions, P(R), cannot be algorithmi-
cally encoded with a finite number of parameters, we need to approximate the distribution
throughout a parametric family P ∈ P(R).

10

MAI 2.3. Approximation Framework in the Distributional Setting

Projection of Bellman Target Distribution

Another problem usually arises after computing the operator T π -or its stochastic version-
over a value distribution Zk ∈ PS ×A: the new distribution may no longer lie in the selected
parametric family P . If this is the case, we further need to apply a projection operator
ΠM : P(R)S ×A → PS ×A, for some metric over distributions M , so as to map T π Zk into the
proper parametric family, thus obtaining ΠMT πZk.

Notice that this forces us to consider the combined operator ΠMT π for evaluating the
convergence of the algorithm, and not simply T π. In particular, for the contraction mapping
theory to apply, it is required to deal with a metric over distributions on which both ΠM

and T π are contractions. Therefore, the geometrical properties of the considered projection
operator ΠM plays an important role in the obtained convergence guarantees.

Function Approximation

Distributional-based RL algorithms face the same problems than classical expected-based
ones, so in many practical situations the large size of the involved state spaces prevents the use
of tabular representations. Instead, they are also implemented using function approximation
in order to estimate the return distribution of each state-action pair.

Whenever function approximation is used, however, we have the problem of having a
limited set of representable value distributions. Analogously to what is done in expected-
based RL with linear function approximations (Section 2.1), this can be faced by adding an
extra projection step that takes any non-representable parametrized return distribution to
the representable set WP := {Ẑ ∈ P : Ẑ is representable}.

In practice, this implies applying another projection operator ΠM ′ : P → WP , for a certain
metric M ′, to the result of the combined operator ΠMT π, hence obtaining ΠM ′ΠMT πZk. As
one can infer, this adds more complexity in assessing the convergence guarantees of the algo-
rithm; now we have to take care of the geometrical properties of all three involved operators.

Stochastic Bellman Operators

In order to evaluate the distributional Bellman operator T π, all possible next state-action-
reward combinations should be taken into account. As in the expected valued case, the
usual way of overcoming this practical limitation is by learning through transition samples
(s, a, r, s′, a′) of the MDP. Hence, we can define a stochastic distributional Bellman operator
,T

π
adapted to the randomness of these transitions, which defines a random measure whose

behaviour is equal in expectation to the true Bellman operator T π.

Along our theoretical development, for the sake of simplicity, we will consider the simpler
setting where stochasticity is not needed. Our analysis and described algorithms, however,
can be easily extended to take into account stochastic operators.

Gradient Updates

Finally, having computed the estimate ΠMT πZk (or Π′
MΠMT πZk if some function approx-

imation is used) of the full target distribution, we still have to define how to compute the
next iterate Zk+1. In the tabular case, where an approximate parametrization distribution
can be stored for each state-action pair, it can be simply defined as Zk+1 = ΠMT πZk, but

11

2. Distributional Reinforcement Learning Master Thesis

for the more general case where we use some function approximation to estimate value dis-
tributions the process is not that easy. In particular, as in expected-based RL with function
approximation, the use of gradient updates seems to be appropriate in these cases[4], as it
helps dissipate some noise introduced in the target by the stochastic approximation.

A key aspect here, however, is the not-straightforward (although by now expected) cor-
respondence between the considered loss -which relates with ΠM ′- and the projection ΠM ;
convergence and good behaviour of the resulting algorithm (i.e. contractibility of Π′

MΠMT π)
have only be proven when both of them rely on the same norm-induced geometry[25, 4].

2.4 Categorical Distributional Reinforcement Learning

Although the distributional perspective is almost as old as Bellman’s equations[32], it was
not until the recent introduction of the Categorical Distributional Reinforcement Learning[17]
(CDRL) that it has become a central role within reinforcement learning. Their algorithm,
called C51, was able to obtain state-of-the-art results in the Arcade Learning Environment[33]
(ALE), outperforming the top expected-valued solutions by then.

Even though C51 is a clear heuristic-based example of a CDRL algorithm that lacks from
any theoretical convergence guarantee, it can still be be fully characterized by the distribu-
tional RL framework described in the previous subsection:

• The ’C’ of C51 accounts for ’categorical’, which in turn comes from the distribution
parametrisation that is used: the parametric family of categorical distributions over
some fixed set of equally-spaced supports z1 < · · · < zK :

P =

-
K!

i=1

piδzi

###p1, . . . , pK ≥ 0,
K!

k=1

pk = 1

.
. (2.15)

• It uses a non-linear function approximation for estimating the value distributions Z at
each state-action pair; in particular, a neural network is used for that purpose.

• C51 learns from sampling transitions, so it implements the stochastic distributional
Bellman operator ,T

π
and the stochastic distributional Bellman optimality operator

,T
∗
. Given a sampled transition (st, at, r, st+1, at+1), these stochastic operators basi-

cally transform the supports of the distributions by an affine shift map fr,γ : R → R,
defined by fr,γ(z) = r + γz; in our notation,

,T Zt(st, at) = (fr,γ)#Zt(st+1, at+1)

with at+1 either being selected by sampling the policy π(·|st+1) (categorical policy eval-
uation, i.e. ,T = ,T

π
), or being the action with the highest estimated expected returns

(categorical Q-learning, ,T = ,T
∗
).

• It applies the heuristic projection operator ΠC after computing the stochastic Bellman
operators in order to recover a distribution within the selected parametric family P .
This projection is defined for single Dirac measures as

ΠC(δy) =

/
00001

00002

δz1 y ≤ z1

zi+1−y
zi+1−zi

δzi +
y−zi

zi+1−zi
δzi+1

zi < y < zi+1

δzK y > zK

(2.16)

12

MAI 2.4. Categorical Distributional Reinforcement Learning

and can be easily extended to finite mixtures of Dirac measures as follows:

ΠC

%
N!

i=1

piδyi

&
=

N!

i=1

piΠC(δyi)

The result of the projection step provides us with the target ,Zt(st, at) = ΠC
,T Zt(st, at).

• Finally, the original C51 performs a single step of gradient descent on the Kullback-
Leibler divergence (see Appendix A.3 for the definition of this measure) of the prediction
Zt(st, at) from the target ,Zt(st, at):

KL
3
,Zt(st, at)||Zt(st, at)

4

with respect to the parameters of Zt(st, at); this gradient is used to generate the new
estimate Zt+1(st, at) =

5K
k=1 pt+1,k(st, at)δzk .

Pseudo-Algorithm 1 (provided by [25]) synthesises the steps performed by C51.

Algorithm 1: Categorical Distributional Reinforcement Learning: C51
Require: Zt(s, a) =

5K
k=1 pt,k(s, a)δzk for each (s, a)

Input: A sample transition (st, at, rt, st+1)
#Compute distributional Bellman target
if Categorical Policy Evaluation then

a∗ ∼ π(·|st+1)
else if Categorical Q-learning then

a∗ ← arg maxaQ(st+1, a)
end if
,Z∗(st, at) ← (frt,γ)#Zt(st+1, a

∗)
#Project target onto support
,Zt(st, at) ← ΠC

,Z∗(st, at)
#Compute KL loss

Find gradient KL
3
,Zt(st, at)||Zt(st, at)

4

Generate new estimate Zt+1(st, at) =
5K

k=1 pt+1,k(st, at)δzk
Output: Estimate Zt+1(s, a) for each (s, a)

Despite the good experimental results obtained by C51, all attempts to prove its conver-
gence have failed so far. One of its most controversial steps, at least from a theoretical point
of view, is the use of the KL divergence while applying the heuristic projection ΠC , as they
clearly do not rely on the same norm-induced geometry[25].

We also recall that authors in [17] demonstrates, in the context of policy evaluation setting,
that applying the Bellman operator T π repeatedly to an initial return distribution function Z0

guarantees convergence to the true set of return distributions Zπ in the supremum-Wasserstein
metric.

However, after the introduction of the parametrization P and the projection operator ΠC ,
we have already noted that the operator to be analyzed is not the Bellman operator T π itself
anymore, but its composition with the projection operator, i.e. ΠC T π. As stated in [25], this
can make contractivity break under all Wasserstein distances but d̄1 :

Lemma 2.1. ΠC T π : Z → Z is in general not a contraction in d̄p, for p > 1

13

2. Distributional Reinforcement Learning Master Thesis

In contrast to that, Cramér distance seems to induce a useful geometric structure on
the space of probability measures, allowing us to establish contractivity of the combined
operator ΠC T π in a much more natural way. We dedicate the following two sections to
analyze CDRL algorithms together with Cramér-based metrics in the case of both Tabular
Representations and Linear Function Approximations, respectively, which are the theoretical
frameworks where stable behaviour and convergence properties are proven so far.

2.4.1 Tabular Representation

Our first approach to study Cramér-based CDRL algorithms will be to consider the simplest
reinforcement learning framework, where we are able to store an approximate parametrization
distribution for each state-action pair: the so-called tabular case.

Again, we will consider the parametric family P of categorical distributions over some fixed
support {z1, . . . , zK}, as well as the heuristic projection operator ΠC defined in Equation 2.16
for mapping the backup distribution function T π Z into P . However, for the sake of simplicity
and understandability, we will assume that no stochastic approximation is required.

First of all, we present the result of [25] that motivates the use of Cramér distance ℓ2,
which shows an interesting connection between this distance and the projection operator ΠC :

Proposition 2.2. The Cramér metric ℓ2 endows a particular subset of P(R) with a notion of
orthogonal projection, and the orthogonal projection onto the subset P is exactly the heuristic
projection ΠC. Consequently, ΠC is a non-expansion with respect to ℓ2.

The previous proposition directly leads to the contractivity of the operator ΠC T π in the
supremum-Cramér metric l̄2, which in turn ensures its convergence in the absence of stochastic
approximation:

Proposition 2.3. The operator ΠC T π is a √
γ-contraction in ℓ̄2. Further, there is a unique

distribution function ZC ∈ PS ×A to which the process Zk+1 := Πc T π Zk, given any initial
distribution function Z0 ∈ P(R)S ×A, converges in ℓ̄2 as k → ∞.

Authors in [25] also address the natural question of how the limiting distribution function
ZC can differ from the true return distribution Zπ:

Proposition 2.4. Let ZC be the fixed point distribution of Proposition 2.3. If for all state-
action pairs their corresponding true return distribution Zπ is supported on [z1, zK], then

ℓ̄2(ZC , Z
π) ≤ 1

1− γ
max
1≤i≤K

(zi+1 − zi).

Note that the true return distribution is gradually recovered as the fineness of the support
increases. Hence, this result can be viewed as a way of quantifying the cost of using the
parametrization P instead of fully non-parametric probability distributions. Finally, we also
highlight the assumption that the support of the true return distributions lie on the selected
support because we do not always have access to the scale of rewards in every RL problem;
for these circumstances, an analogous result can be found in Proposition 4 of [25].

2.4.2 Linear Function Approximation

In this second and last theoretical approach, we go a step beyond the tabular case by con-
sidering a framework that makes use of function approximators to compute the parametrized

14

MAI 2.4. Categorical Distributional Reinforcement Learning

return distributions of each state-action pair, assuming a more realistic situation in which the
state space is too large to store individual distributions.

We will restrict our analysis to the context of linear function approximation, whose con-
vergence is already proven[26]. To the best of our knowledge, no Distributional RL algorithm
with a non-linear function approximator has been proven to converge so far, despite the many
efforts in studying C51.

Regarding the rest of approximations and assumptions of the CDRL algorithms considered
in this study, they are exactly the same as in the previous Section 2.4.1: we contemplate the
categorical parametric family P with fixed support {z1, . . . , zK}, the Cramér-based projection
ΠC , and reject any stochastic approximation.

Under this linear regime, for the sake of simplicity, we redefine the approximated return
distributions Z as mappings from states s ∈ S to vectors defined by a linear combination of
features:

ZΘ(s) := Θ⊤φ(s) (2.17)

where φ(s) ∈ Rm is the feature vector at state s and Θ ∈ Rn×K represents the weight matrix.
Therefore, we are assuming that the vector ZΘ(s) ∈ RK is an estimation of a distribution over
the support {z1, . . . , zK}, although it might have negative components and it is not necessarily
normalized.

Notation. In vector notation, we will write ZΘ = ΦΘ ∈ Rn×K , where Φ ∈ Rn×m is the
feature matrix, simply formed by all feature vectors.

Before continuing, let us carefully review the three different spaces of distributions-like
objects that appear in CDRL with linear function approximation:

• On the one hand, there is the probability space where true return distributions lie;
without any prior knowledge, one should simply consider the full space of distributions
Zπ ∈ P(R). Assuming that it is known a priori the scale of the rewards, it can be
reduced to the space of distributions with support in a certain interval; in our case, it
could be Zπ ∈ P([z1, zK]).

• On the other hand, the selected parametric family P of categorical distributions over
the support {z1, . . . , zK}; so far, our estimated return distributions Z is expected to
belong to this space, Z ∈ P .

• Finally, and in addition to the previous two, there is now a vector space spanned by the
features Φ ∈ Rn×m, i.e. the set of representable return distributions L := {ΦΘ : Θ ∈
Rm×K}. This is, in fact, the crucial space in our development, as every approximated
return distribution ZΘ lies in it. Ideally, if all ZΘ were proper probability distributions
over {z1, . . . , zK}, we would have L ⊂ P (assuming some loss of expressiveness by our
linear model).

Let us review the process. First, our linear function model provides us with return distri-
bution estimates

ZΘ ∈ L

for each state s ∈ S. In order to get better approximations, CDRL algorithm applies the
distributional Bellman operator, so we get

T πZΘ ∈ P([z1, zK]).

15

2. Distributional Reinforcement Learning Master Thesis

Then we would need to apply a first projection operator Π1 : P([z1, zK]) → P , for some
metric M1, so as to recover a distribution within our selected parametric family (like the
Cramér projection ΠC), so

Π1T πZΘ ∈ P .

However, for the algorithm to compare distributions and improve its linear representations,
now we need a further projection onto the space L, which defines all the probability distribu-
tions that our linear model can actually represent. Thus, the idea is that a second projection
operator Π2 : P → L, based on some metric M2, is required so that

Π2Π1T πZΘ ∈ L.

As shown in [26], the (re)definition of both projections plays again a very important role for
proving the convergence of the process ZΘk+1

= Π2Π1T πZΘk
.

So far, it was demonstrated in the tabular case that the combined operator ΠC T π is a
contraction mapping in the supremum-Cramér metric ℓ̄2; now the task is to achieve a similar
result for the combination Π2Π1T π. For doing so, authors in [26] introduce a generalized
Cramér distance which is able to deal with our return distribution estimates (we recall they
are not necessarily probability distributions).

Let C ∈ RK×K denote the lower-triangular matrix of ones, and e ∈ RK the vector of ones.
Let eK = (1/

√
K)e⊤ and Πe⊤K

= IK − eKe
⊤
K . For any two discrete value distributions Z1, Z2

over the fixed support {z1, . . . , zK}, the generalized Cramér distance is defined as

ℓ2λ(Z1, Z2) = (Z1 − Z2)
⊤Πe⊤K

CC⊤Πe⊤K
(Z1 − Z2) + λ((Z1 − Z2)

⊤eK)
2 (2.18)

The notation can be simplified by denoting Cλ = Πe⊤K
CC⊤Πe⊤K

+ λeKe
⊤
K , so the distance

definition can be rewritten as

ℓ2λ(Z1, Z2) = (Z1 − Z2)
⊤Cλ(Z1 − Z2) = ‖Z1 − Z2‖Cλ

Looking at Equation 2.18, the idea is that the first term on the right-hand side penalizes the
difference in cumulative probabilities of both distributions, whereas the second term accounts
for the difference in mass; we refer to [26] for further details.

In addition to the Cramér distance generalization, authors in [26] also take into account
the distribution ξ according to which the states to be updated are sampled; they use it to
define a ξ-weighted Cramér distance over value distributions as

ℓ2ξ,λ(Z1, Z2) :=
!

s∈S

ξ(s)ℓ2λ(Z1(s), Z2(s)). (2.19)

The two presented distances are precisely the key to all further results shown in [26], and
therefore to prove the desired convergence of CDRL algorithm with linear function approxi-
mation.

In particular, the previously commented projections of value distributions Π1 and Π2 are
defined through ℓ2λ and ℓ2ξ,λ, respectively. The former, which we will denote by Πλ,P , projects
any value distribution Z onto the subspace P according to

Πλ,PZ := argminZ′∈Pℓ
2
λ(Z,Z

′); (2.20)

in fact, it can be seen that the previously considered Cramér projection ΠC satisfies this
minimization expression[26]. The latter, which in our notation is expressed as Πξ,λ,Φ, performs
a ξ-weighted projection of any value distribution Z onto the set of value distributions Φ by:

Πξ,λ,ΦZ := argminΦΘ,Θ∈Rm×Kℓ2ξ,λ(Z,ΦΘ) (2.21)

16

MAI 2.4. Categorical Distributional Reinforcement Learning

The following Lemma 2.5 shows an interesting result regarding the good behaviour of this
projection Πξ,λ,Φ

Lemma 2.5. Πξ,λ,Φ is a non-expansion in ℓ2ξ,λ; for every pair of return distributions Z,Z ′,
we have

ℓ2ξ,λ(Πξ,λ,ΦZ,Πξ,λ,ΦZ
′) ≤ ℓ2ξ,λ(Z,Z

′)

At this point, before facing the proof of convergence of the whole CDRL algorithm, it is
appropriate to rewrite distances ℓ2λ and ℓ2ξ,λ into two separate components: along dimension
eK and along the subspace A orthogonal to eK , A := Πe⊤K

C:
-

ℓ2λ(Z1, Z2) = ‖Z1 − Z2‖2AA⊤ + λ‖Z1 − Z2‖2eKe⊤K
ℓ2ξ,λ(Z1, Z2) = ‖Z1 − Z2‖2ξ,AA⊤ + λ‖Z1 − Z2‖2ξ,eKe⊤K

(2.22)

The reason relies in Lemma 2.6, which states that the combined operator Πλ,P T π behaves
differently in each of these dimensions: while contracting all dimensions orthogonal to eK -i.e.
the subspace A- by a factor γ1/2, it is only a non-expansion along eK .

Lemma 2.6. Let dπ the stationary distribution induced by policy π. For any two return
distributions Z1, Z2, we have

‖Πλ,P T π Z1 − Πλ,P T π Z2‖2dπ ,AA⊤ ≤ γ‖Z1 − Z2‖2dπ ,AA⊤

‖Πλ,P T π Z1 − Πλ,P T π Z2‖2dπ ,eKE⊤
K

≤ ‖Z1 − Z2‖2dπ ,eKE⊤
K

Note that, instead of the more general notation ξ, we are now specifying the stationary
distribution dπ. This is simply due to the fact that in our CDRL algorithm we are actually
following policy π to describe the agent trajectories we are learning from.

Finally, we present the theorem of [26] that provides us with the desired convergence
guarantee for CDRL with Linear Function Approximation:

Theorem 2.7. Let dπ the stationary distribution induced by policy π. The process

Z0 := ΦΘ0, Zk+1 := Π̂dπ ,λ,ΦT
πZk

converges to a set S such that, for any two Z,Z ′ ∈ S, there is a S-indexed vector of constants
α such that

Z(s) = Z ′(s) + α(s)eK .

If λ > 0, S consists of a single point Ẑ which is the fixed point of the process. Moreover, we
can bound the error of this fixed point with respect to the true return distribution Zπ by

ℓ2dπ ,λ(Ẑ, Z
π) ≤ 1

1− γ
ℓ2dπ ,λ(Πdπ ,λ,ΦZ

π, Zπ)− γλ

1− γ
‖Ẑ − Zπ‖dπ ,eKe⊤K

,

where the second terms measures the difference in mass between Ẑ and Zπ.

Note, however, that in order to prove convergence Theorem 2.7 do not make use of the
projection Πdπ ,λ,Φ, but the operator Π̂dπ ,λ,Φ, which is based on the loss

ℓ̂2λ(Z1, Z2) = (Z1 − Z2)
⊤Πe⊤K

CC⊤Πe⊤K
(Z1 − Z2) + λ(Z2e− 1)2 (2.23)

instead of on the ℓ2λ distance. In fact, we refer to ℓ̂2λ as a loss because it is not a distance, as
it contains the explicit normalization penalty (Z2e− 1)2 that encourages return distributions

17

2. Distributional Reinforcement Learning Master Thesis

to have unit mass. Given expression 2.23, the corresponding ξ-weighted Cramér loss ℓ̂2ξ,λ is
accordingly derived, and operator Π̂dπ ,λ,Φ is defined so that, for a return distribution Z, it
finds the value distribution in the span of Φ which minimizes ℓ̂2ξ,λ(Z, ·):

Π̂dπ ,λ,ΦZ = ΦΘ∗ where Θ∗ = argminΘℓ̂
2
ξ,λ(Z,ΦΘ) (2.24)

For bounding the approximation error we recover the well-defined distance ℓ2dπ ,λ, though.

As pointed out in [26], the parameter λ plays an important role in the theorem, both to
guarantee convergence and to bound the approximation error. At a high level, this makes
sense: a high value of λ forces the algorithm to output something close to a distribution, at
the expense of actual predictions. On the other hand, taking λ = 0 yields a process which
may not converge to a single point.

18

3 Covariate Shift Ratio

Before presenting our original work, we also need to introduce the Covariate Shift approach
within Off-Policy Learning, which basically defines our starting point. In particular, this
section is devoted to thoroughly review the Consistent Off-Policy Temporal Difference (COP-
TD) solution presented in [27], as well as its discounted -and improved- version (Discounted
COP-TD, or DCOP-TD), developed in [29].

To begin with, we describe the general Off-Policy Learning setting that will be used from
this point on. Then, we assess the main theoretical concepts of COP-TD, paying special atten-
tion to its convergence guarantees together with linear function approximation. To conclude
the section, we present the DCOP-TD approach and show how it enhances the aforementioned
convergence guarantees of the undiscounted counterpart in practical applications.

3.1 Off-Policy Learning Setting

As stated in [29], now we move to the policy evaluation problem within off-policy learning,
where we want to learn the value function V π of a target policy π from samples drawn from
P and a behaviour policy µ.

Remark. Up to this point, we only considered the off-policy learning setting, when π is both
the behaviour and the target policy.

We first recall some notation:

• The Bellman equation for the state value function can be expressed in vector notation as
V π = rπ+γPπV

π, where V π ∈ Rn, rπ ∈ Rn and Pπ ∈ Rn×n. The value function is in fact
the fixed point of the Bellman operator Tπ : Rn×n → Rn×n, defined as TπV := rπ+γPπV .
It defines a single step of bootstrapping : the process V k+1 := TπV

k converges to V π.

• Let d ∈ Rn; we write Dd ∈ Rn×n for the corresponding diagonal matrix, and consider
the weighted squared seminorm notation of vectors x ∈ Rn ||x||2A := ||Ax||2 = xTATAx,
||x||2d := ||x||2Dd

=
5n

i=1 d(i)
2x(i)2.

• e ∈ Rn accounts for the vector of all ones, and ∆(S) for the simplex over states:
d ∈ ∆(S) =⇒ dT e = 1, d ≥ 0.

• We recall that d ∈ ∆(S) is the stationary distribution of a Markov Chain with transition
function P if and only if d = d ·P . This distribution is unique when P defines a Markov
chain with a single recurrent class[30].

In this particular setting we distinguish between two different state-to-state transition func-
tions, Pπ and Pµ, one for each policy; their respective stationary distributions will be repre-
sented by dπ and dµ.

Linear Function Approximation

We recall from the linear RL setting described in Section 2.1 that the expected behaviour
of the update rule (expression 2.7) is described by the projected Bellman operator ΠdTπ,
where Πd represents the projection in the d-weighted L2 norm (d ∈ ∆(S)) onto the set of
representable value functions by the considered linear model.

19

3. Covariate Shift Ratio Master Thesis

Moreover, we observed that the projection weights d must coincide with those of the
stationary distribution of the target policy π for the combined operator to be a contraction
(in particular, a contraction in the dπ-weighted L2 norm).

However, in off-policy learning our available data is drawn from the behaviour policy µ,
so states are considered to be updated according to dµ instead of dπ. In particular, if nothing
changes with respect to the on-policy setting, this implies that Πdµ T π is the actual expected
behaviour of the implemented update rule 2.7.

One way of solving this consists in modifying the learning rule so that it can be considered
under the sampling distribution dπ. An example of such a solution is the Covariate Shift
Approach, explained in the following section.

3.2 Covariate Shift Approach

Supposing that stationary distributions dπ and dµ are known, and that states are updated
according to s ∼ dµ, the covariate shift approach presented in [27] uses importance sampling
to redefine 2.7 so that the semi-gradient update rule can be considered under the sampling
distribution dπ:

θ ← θ + α
dπ(s)

dµ(s)

)
r + γφ(s′)T θ − φ(s)T θ

*
φ(s) (3.1)

with a ∼ µ(·|s), r ∼ R(s, a) and s′ ∼ P (·|s, a).
Hence, the Consistent Off-Policy Temporal Difference[27] (COP-TD) algorithm seek to

learn that covariate shift ratio dπ/dµ from samples by bootstrapping from a previous predic-
tion, similar to temporal difference learning. Given a step size α > 0, a ratio vector c ∈ Rn and
a sample transition (st, at, st+1) = (s, a, s′) drawn from dµ, µ(·|s) and P (·|s, a), respectively,
the COP-TD update is

c(s′) ← c(s′) + α

'
π(a|s)
µ(a|s)c(s)− c(s′)

(
(3.2)

The expected behaviour of this learning rule, which learns "in reverse" compared to TD
learning, is captured by the COP operator Y :

(Y c)(s′) := E
s∼dµ,a∼µ(·|s)

'
π(a|s)
µ(a|s)c(s)

####s
′
(

(3.3)

Note that the condition st+1 = s′ in the expectation of 3.3 forces to take into account the
distribution of previous state-action pairs (s, a) according to policy µ. The distribution of the
possible previous states s is given by the time-reversal transition function P̄µ, whose entries
are:

P̄µ(s|s′) := Probµ(st = s|st+1 = s′)

=
Probµ(st+1 = s′|st = s)Probµ(st = s)

Probµ(st+1 = s′)

=
Pµ(s

′|s)dµ(s)
dµ(s′)

(3.4)

Or, equivalently, P̄µ = D−1
dµ
P T
µ Ddµ in vector notation. Regarding the distribution of the pos-

sible actions that lead to s′ from a certain state s by following policy µ, it will be represented

20

MAI 3.2. Covariate Shift Approach

by function µ̄:

µ̄(a|s, s′) := Probµ(at = a|st = s, st+1 = s′)

=
Probµ(at = a, st = s, st+1 = s′)

Probµ(st = s, st+1 = s′)

=
Probµ(st+1 = s′|at = a, st = s)Probµ(at = a|st = s)Probµ(st = s)

Probµ(st+1 = s′|st = s)Probµ(st = s)

=
P (s′|s, a)µ(s|a)

Pµ(s′|s)

(3.5)

Bearing in mind the introduced notation, the expectation in 3.3 can be rewritten and
expanded:

E
s∼dµ,a∼µ(·|s)

'
π(a|s)
µ(a|s)c(s)

####s
′
(
= E

s∼P̄µ(·|s′),a∼µ̄(·|s,s′)

'
π(a|s)
µ(a|s)c(s)

(

=
!

s

P̄µ(s|s′)
!

a

µ̄(a|s, s′)π(a|s)
µ(a|s)c(s)

=
!

s

6
Pµ(s

′|s)dµ(s)
dµ(s′)

7!

a

6
P (s′|s, a)µ(s|a)

Pµ(s′|s)

7
π(a|s)
µ(a|s)c(s)

=
1

dµ(s′)

!

s

dµ(s)c(s)
!

a

π(a|s)P (s′|s, a)

=
1

dµ(s′)

!

s

Pπ(s
′|s)dµ(s)c(s)

(3.6)

Thus, according to the last term of 3.6, the COP operator Y can be expressed in vector
notation as

Y c = D−1
dµ
P T
π Ddµc (3.7)

Regarding the behaviour of the operator, the following result of [29] guarantees that the
process ck+1 := Y ck converges, and that any multiple of dπ/dµ is a fixed point:

Theorem 3.1. Suppose that Pπ defines an ergodic Markov chain on S, and let c0 ∈ ∆(S).
Then the process ck+1 := Y ck converges to C dπ

dµ
, C ∈ R+.

Furthermore, we can reduce the set of fixed points to the covariate shift ratio exclusively
by considering a normalized version of the COP operator:

Corollary 3.2. Suppose conditions of Theorem 3.1 are satisfied. Let

(Ȳ c)(s′) :=
(Y c)(s′)5
s(Y c)(s)

be the normalized COP operator. Then the unique fixed point of Ȳ is the ratio dπ/dµ, to which
ck+1 = Ȳ ck converges.

COP-TD with Linear Function Approximation

Whenever the value function is approximated, we should expect to learn a ratio ĉ estimate
as well. In our analysis, we consider a linear approximation of the form

ĉ(s) = φ(s)⊤w

21

3. Covariate Shift Ratio Master Thesis

where again φ defines a map from states to features, φ : S → Rk, and now w ∈ Rk is the
vector of weights we are interested in learning. Note that in such a model negative ratio
values are allowed; this can be avoid in practice by clipping those values at zero.

The introduced linear model, given a sample transition (s, a, s′) drawn from dµ, µ(·|s) and
P (·|s, a), respectively, induces the following semi-gradient update

w̃ ← w + α

'
π(a|s)
µ(a|s)φ(s)

⊤w − φ(s′)⊤w

(
φ(s′), (3.8)

which can be thought as a d-weighted projection Πd for some d ∈ ∆(S)[29]. However, an
additional step is required for granting that the resulting ratio estimate ĉ corresponds to some
proper distribution ratio d/dµ for d ∈ ∆(S). This is solved in [27] by following the update
rule by a projection onto the dµ-weighted simplex ∆Φ,dµ

w ← argminu∈WΦ,dµ
‖u− w̃‖ (3.9)

where WΦ,dµ := {u ∈ Rk :
5

s∈S dµ(s)φ(s)
⊤u = 1,φ(s)⊤u ≥ 0}. Looking at the definition of

WΦ,dµ , we can identify this second projection Π∆Φ,dµ
as a normalization step as well.

The following Lemma 3.3 of [29] shows that, in fact, the normalization component of
operator Π∆Φ,dµ

is not only a convenience but also a requisite to get a good convergence
guarantee.

Lemma 3.3. Let Y be a symmetric COP-TD operator and Π the projection onto Φ in L2

norm. If dπ/dµ is not in the span of Φ, then c = 0 is the only fixed point of the process
ck+1 = ΠY ck.

Hence, in order to get a meaningful approximation ratio, we must consider the repeated
application of the combined operator Π∆Φ,dµ

ΠdY , so that iterating ĉk+1 := Π∆Φ,dµ
ΠdY ĉk

provides the estimate.

In practice, however, that combination of the COP operator with the projection onto the
dµ-weighted simplex can be really hard to implement; authors in [27] presented a method
for approximating the projection step in an online, sample-based setting for linear function
approximation, but to the best of our knowledge there are no analogous implementation
designs for other kind of function approximations, like neural networks.

3.3 Discounted COP-TD

Despite the good properties shown of COP-TD, there are two practical limitations of the
algorithm that specially motivated the authors in [29] to work in an improvement. On the one
hand, we have the previously commented difficulties to practically implement the projection
operator Π∆Φ,dµ

with function approximations other than linear ones. On the other hand,
we note that the COP operator Y lacks a result ensuring it is a contraction mapping, which
can make the algorithm converge at a slow rate or with high variance, or even be unstable
together with function approximation.

They address these two issues in [29] through the γ̂-discounted COP-TD learning rule;
given a step size α > 0, a ratio vector c ∈ Rn and a sample transition (st, at, st+1) = (s, a, s′)
drawn from dµ, µ(·|s) and P (·|s, a), respectively, it modifies the previous COP-TD update
3.2 by

c(s′) ← c(s′) + α

'
γ̂
π(a|s)
µ(a|s)c(s) + (1− γ̂)− c(s′)

(
(3.10)

22

MAI 3.3. Discounted COP-TD

Again, the expected behaviour of this rule is captured by the corresponding γ̂-discounted
COP operator Yγ̂

(Yγ̂c)(s
′) := E

s∼dµ,a∼µ(·|s)

'
γ̂
π(a|s)
µ(a|s)c(s) + (1− γ̂)

####s
′
(
= γ̂(Y c)(s′) + (1− γ̂), (3.11)

where Y is the COP operator (3.3). In vector notation we have

Yγ̂c = γ̂D−1
dµ
P T
π Ddµc+ (1− γ̂)e (3.12)

From the above expressions, it is straightforward to notice that we recover COP-TD for γ̂ = 1,
i.e. Y1 = Y .

So as to characterize the discounted COP operator authors in [29] introduce the discounted
reset transition function P̂π, which for a given γ̂ ∈ [0, 1] is defined as

P̂π := γ̂Pπ + (1− γ̂)ed⊤µ ,

denoting by d̂π its stationary distribution (i.e. d̂π = d̂πP̂π). We can interpret that P̂π encodes
a stochastic process in which either transitions occur as usual with probability γ̂, or resets
to the stationary distribution dµ with the remainder probability. Lemma 3.4 gives us more
insights about how operator Yγ̂ is intimately connected to this process:

Lemma 3.4. For γ̂ < 1, the ratio d̂π/dµ is the unique fixed point of the operator Yγ̂, where
d̂π is the stationary distribution of the transition function P̂π corresponding to the given γ̂

So, basically, the discounted reset transition function encodes the transition dynamics
associated to the use of the DCOP operator. Furthermore, as shown in the following result
of [29], we can also get convergence guarantees for the repeated application of Yγ̂ for γ̂ < 1
without requiring positive initial values or any normalization.

Theorem 3.5. Given γ̂ < 1, the process ck+1 := Yγ̂c
k converges to d̂π/dµ for any c0 ∈ Rn.

DCOP-TD with Linear Function Approximation

Now it is time to analyze how DCOP-TD algorithm behaves when it is combined with (linear)
function approximation, and in particular whether it provides us with good convergence
guarantees in a practical online application.

As in COP-TD, a linear ratio estimate ĉ(s) = φ(s)⊤w is considered, and sample transitions
(s, a, s′) are assumed to be drawn from dµ, µ(·|s) and P (·|s, a), respectively. This induces the
semi-gradient update

w̃ ← w + α

'6
γ̂
π(a|s)
µ(a|s)φ(s)

⊤w + (1− γ̂)e

7
− φ(s′)w

(
φ(s′), (3.13)

which again can be interpreted as a d-weighted projection for some d ∈ ∆(S). Nevertheless,
now the additional, hard-to-implement projection-normalization step is not required for the
process to converge. In this context, authors in [29] argue that s′ ∼ dµ -since dµ is the
stationary distribution that ens up ruling the sampled agent trajectories-, and therefore that
the induced d-weighted projection should be in fact considering d = dµ. As a result, the
process we are analyzing can be described by the projected DCOP operator

ΠdµYγ̂

23

3. Covariate Shift Ratio Master Thesis

Before presenting any convergence result, however, we need to introduce the concentra-
tion coefficient Kπ,µ,n defined in Lemma 3.6; at a high level, it measures the discrepancy in
stationary distributions -dπ and dµ- between a pair of states that can be considered ’close’
according to policy π, in the sense that one of these states is reachable from the other in n
steps; it simplifies to 1 when π = µ.

Lemma 3.6. The induced operator norm of the COP operator Y n is upper bounded by a
constant

8
Kπ,µ,n in the sense that

‖Y n‖2dµ ≤ Kπ,µ,n := sup
s′∈S

!

s∈S

dµ(s)

dµ(s′)
P n
π (s

′|s).

Further, the series can be bounded by a constant,

Kπ,µ,n ≤ Kπ,µ :=

9999
dµ(s)

dπ(s)

9999
∞

9999
dπ(s)

dµ(s)

9999
∞

Theorem 2.7 provides us with the reason why this concentration coefficient is required in
our study: authors in [29] make use of it to obtain a safe value of γ̂ below which the DCOP
operator is a contraction mapping, and from this they can prove convergence of the combined
operator ΠdµYγ̂ in the linear function approximation case.

Theorem 3.7. Consider the DCOP operator Ŷγ̂. For any c ∈ Rn,
99999Ŷγ̂c−

d̂π
dµ

99999
dµ

≤ γ̂n
8

Kπ,µ,1

99999c−
d̂π
dµ

99999
dµ

and in particular Ŷγ̂ is a contraction mapping for γ̂ < (Kπ,µ,n)
− 1

2 . Since Kπ,µ,1 is a bounded
series, the exponential factor is guaranteed to dominate, so there exists a value of γ̂ < 1 for
which the projected DCOP operator ΠdµŶγ̂ is a contraction mapping.

Remark. We note that the actual Theorem 4 of paper [29], from which previous Theorem
3.7 is extracted, provides a slightly more general result for n-step updates; we refer to [1] for
further details about these methods. For simplicity, we have reduced it to the case of 1-step
updates, as we have been considering in the rest of our analysis.

So, provided we take a sufficiently small γ̂, Theorem 3.7 guarantees that DCOP-TD over-
comes the divergence issues of COP-TD by granting that ΠdµŶγ̂ is a contraction mapping. In
addition, the empirical evaluation performed on [29] of this discounted version suggests that
it is unlikely to be in the worst-case scenario achieving Kπ,µ,1 strictly, as the algorithm avoid
divergence even with large γ̂ values.

24

4 Distributional Covariate Shift Approach

Now that we have introduced both Distributional RL and the Covariate Shift Approach for
Off-policy Learning, we are ready to present our original work.

Similarly to what was done in [17] by going beyond the notion of value within the reinforce-
ment learning setting, we first wanted to analyze a distributional perspective of the covariate
shift approach. Hence, our starting point could be the following distributional equation

X(s′)
D
=

π(Aµ
s,s′ |S

µ
s′)

µ(Aµ
s,s′ |S

µ
s′)

X(Sµ
s′) (4.1)

where

• X is the random ratio between distributions of a certain state.

• (Sµ
s′ , A

µ
s,s′) is the previous state-action random variable:

– The random variable Sµ
s′ represents the states from which state s′ is achievable by

following policy µ; Sµ
s′ = s with probability P̄µ(s|s′)

– Aµ
s,s′ encodes the random action that can be taken to get state s′ from a state

s ∼ Sµ
s′ according to policy µ, so Aµ

s,s′ = a with probability µ̄(a|Sµ
s′ , s

′)

Thus, paying attention to equation 4.3, we note that it intrinsically expresses the random
ratio of a state X(st+1) as a mixture distribution with the ’corrected’ previous state random
ratios π(at|st)

µ(at|st)X(st) as mixing components, and the previous state-action random variable
(Sµ

st+1
, Aµ

st,st+1
) as the mixing distribution (see Appendix A.2 for more details about mixture

distributions):

fX(st+1)(x) =
!

st

P̄µ(st|st+1)
!

at

µ̄(at|st, st+1)fπ(st,at)
µ(st,at)

X(st)
(x) (4.2)

Notation. So as to reduce the complexity and increase the readability of the formulation,
we introduce the following notation:

• Let define ρ the policy ratio π/µ:

ρ(a, s) :=
π(a|s)
µ(a|s)

• Note in equation 4.2 that there are as many mixture components as state-action pairs
(st, at); thus, we can iterate the summation over all these possible pairs and define each
corresponding mixture weight α as

α(st, at|st+1) = P̄µ(st|st+1)µ̄(at|st, st+1)

4.1 Distributional DCOP-TD

We will directly develop the basis of a Distributional Discounted COP-TD, which has provided
us with better convergence guarantees in the expected-valued case. Thus, the considered
distributional equation becomes

X(s′)
D
= γ̂ρ(Sµ

s′ , A
µ
s,s′)X(Sµ

s′) + 1− γ̂, (4.3)

where γ̂ ∈ (0, 1) is the discount factor, and X represents now the random discounted ratio
between distributions at a certain state.

25

4. Distributional Covariate Shift Approach Master Thesis

Definition 1. We define the distributional DCOP operator Y D
γ̂ : P(R) → P(R) as

(Y D
γ̂ X)(st+1) :

D
= γ̂ ρ(Sµ

st+1
, Aµ

st,st+1
)X(Sµ

st+1
) + 1− γ̂

so that
f(Y DX)(st+1)(x) =

!

(st,at)

α(st, at|st+1) · fγ̂ρ(st,at)X(st)+1−γ̂(x)

In addition, we can recover the distributional undiscounted setting by simply considering
γ̂ = 1, with the corresponding distributional COP operator Y D = Y D

1 .

Lemma 4.1. Let (Y D
γ̂ X)(s) ∈ P(R) be the resulting distribution of applying the distributional

DCOP operator over a random discounted ratio X(s), for any state s ∈ S. Then we have
that

E[(Y D
γ̂ X)(s)] = Yγ̂(E[X(s)])

where Yγ̂ is the original value-based DCOP operator defined in Equation 3.11.

Proof. Let’s consider st+1 ∈ S. The result follows from expanding the expectation of (Y D
γ̂ X)(st+1)

by using the properties of Mixture Distributions (Appendix A.2):

E[(Y D
γ̂ X)(st+1)] =

+ ∞

−∞
xf(Y D

γ̂ X)(st+1)(x)dx

=
!

(st,at)

α(st, at|st+1) ·
+ ∞

−∞
xfγ̂ρ(st,at)X(st)+1−γ̂(x)dx

=
!

(st,at)

α(st, at|st+1) · E [γ̂ρ(st, at)X(st) + 1− γ̂]

= 1− γ̂ + γ̂
!

(st,at)

α(st, at|st+1) · ρ(st, at) · E [X(st)]

= 1− γ̂ + γ̂ E
st∼P̄µ(·|st+1),at∼µ̄(·|st,st+1)

[ρ(st, at)E[X(st)]]

= 1− γ̂ + γ̂Y (E[X(s)]) = Yγ̂(E[X(s)])

(4.4)

where the last but one step holds taking into account the second term of the expansion 3.6
of the COP operator Y . □

In the previous Lemma 4.1 we show that the expectation of the learned ratio distributions
coincide with the values we would learn by applying the usual DCOP operator to the expected
values of the ratio distributions. This helps us prove the following Corollary:

Corollary 4.2. Consider the process Xk+1 := Y D
γ̂ Xk for any initial ratio distribution X0 ∈

P(R)n. Then E[Xk] converges to some fixed point c ∈ Rn as k → ∞.

Proof. Lemma 4.1 tells us that:

E[Xk+1] = E[Y D
γ̂ Xk] = Yγ̂(E[Xk])

Defining ck := E[Xk], we note that the above expression defines the process

ck+1 = Yγ̂c
k

Invoking the convergence result (Theorem 3.5) of the DCOP operator Yγ̂, we conclude that
ck = E[Xk] converges to some fixed point c ∈ Rn. □

26

MAI 4.2. Log-Distributional Covariate Shift Approach

Note that Corollary 4.2 allows us to estimate the Covariate Shift Ratio values in this
Distributional DCOP-TD setting as simply

dπ
dµ

(s) = E[X(s)]

However, so far we have not shown any convergence guarantee for the iterates {Xk} to the true
ratio distribution X. That is precisely what motivated us to develop the following logarithmic
approach, which indirectly provides us with the desired distributional convergence of the Y D

γ̂

operator.

4.2 Log-Distributional Covariate Shift Approach

Note that the Distributional Covariate Shift Equation 4.3 is purely multiplicative, and so it is
the associated update rule in the learning setting. This complicates the analysis, possibly be-
ing one of the reasons why we could not find any convergence guarantee for the distributional
DCOP-TD algorithm.

There was, though, one way of transforming that multiplicative behaviour into a better-
suited aditive one: working in the logarithmic space. To do so, we first define the correspond-
ing log-ratio distributions:

Definition 2. Consider any state st+1 ∈ S, and the corresponding ratio distribution X(st+1).
We define the log-ratio distribution W (st+1) ∈ P(R) as

W (st+1) := log (X(st+1)) ,

so that

fW (st+1)(x) =
!

(st,at)

α(st, at|st+1) · flog(ρ(st,at)X(st))(x)

=
!

(st,at)

α(st, at|st+1) · flog(ρ(st,at))+W (st)(x)

Having these new distribution objects lying in the logarithmic space, our proposal is to
learn an estimate of the true log-ratio distribution WC in that space. Hence, in the undis-
counted case, the corresponding learning rule would be captured by the following operator:

Definition 3. We define the Log-Distributional COP operator G : P(R) → P(R) as

(GW)(st+1) := log
:
ρ(Sµ

st+1
, Aµ

st,st+1
)
;
+W (Sµ

st+1
) (4.5)

so that
f(GW)(st+1)(x) =

!

(st,at)

α(st, at|st+1) · flog(ρ(st,at))+W (st)(x)

Remark. At this point, one might wonder why this logarithmic approach was not considered
in the original expected-valued (D)COP-TD development; the reason is that, in general,
Jensen’s inequality prevents the correspondence between the multiplicative fixed point c ∈ Rn

and the exponential of the log fixed point:

E[c(s)] ∕= exp(E[log c(s)]) since E[log c(s)] ≤ log(E[c(s)])

27

4. Distributional Covariate Shift Approach Master Thesis

In contrast to that, in the distributional setting the distribution mixture plays the role of the
expectation in the valued case, and we do can interchange mixtures and functions thanks to
their properties (see Appendix A.2). Thus,

X(s)
D
= exp(W (s)) (4.6)

Note that previous expression 4.6 ensures that learning the additive fixed distribution WC

in log space and exponentiating it would lead to the proper ratio distribution. However, we
emphasize that, so far, we do not have any guarantee that these distributional fixed points
exist, neither in log space nor in the original multiplicative one.

What we do know, though, is that the expectation of the ratio distributions that result
from the repeated application of the distributional (D)COP operator converge (Corollary
4.2); the following Proposition 4.3 shows that this result can be extended to exponentiated
log-ratio distributions, so that, again, we can estimate the Covariate Shift Ratio values in the
Log-Distributional setting as simply

dπ
dµ

(s) = E[exp(W (s))]

Proposition 4.3. Consider the process W k+1 := GW k for any initial log-ratio distribution
W 0 ∈ P(R)n. Then E[exp(W k)] converges to some fixed point c ∈ Rn as k → ∞.

Proof. In particular, by the definition of a log-ratio distribution, the sequence {W k} induces
a sequence of ratio distributions {Xk}, Xk ∈ P(R)n, such that, for every state st+1 ∈ S,

Xk+1(st+1) = exp(W k+1(st+1)) = exp(GW k(st+1)) = exp(log
:
ρ(Sµ

st+1
, Aµ

st,st+1
)
;
+W (Sµ

st+1
))

= exp(log
:
ρ(Sµ

st+1
, Aµ

st,st+1
)X(Sµ

st+1
)
;
= Y DXk(s)

In compact notation,

Xk+1 = exp(W k+1) = exp(GW k) = Y DXk

From that, the result follows by taking expectations and applying Corollary 4.2. □

Our goal, nonetheless, is to get a more robust convergence result beyond expectations: we
would like to prove the existence -and uniqueness- of some fixed point WC . In practice, as
we have shown in previous Sections, the discounted version is potentially more suitable to
attain that objective, but now that we work in a logarithmic space we face the problem of
how exactly applying the γ̂-discounting in order to get a practical and reasonable algorithm.

We finally implemented the discounting so that the resulting operator belongs to the class
of Bellman operators already detailed and analyzed in the RL literature. As we will see, this
will greatly simplify our study, and will provide us with strong convergence results.

Definition 4. We define the Log-Distributional DCOP operator Gγ̂ : P(R) → P(R) as

(Gγ̂W)(st+1) := log
:
ρ(Sµ

st+1
, Aµ

st,st+1
)
;
+ γ̂W (Sµ

st+1
) (4.7)

so that
f(Gγ̂W)(st+1)(x) =

!

(st,at)

α(st, at|st+1) · flog(ρ(st,at))+γ̂W (st)(x)

28

MAI 4.3. Categorical Log-Distributional DCOP-TD

The similarities of Gγ̂ with the usual distributional Bellman operator (Expression 2.14) are
quite evident; in fact, the Log-Distributional DCOP operator defines a distributional Bellman
update where

• the policy that drives the agent trajectory is µ

• the state-to-state transition function is P̄µ, the time reversal transition function defined
in 3.4.

• the immediate reward is log
:
ρ(Sµ

st+1
, Aµ

st,st+1
)
;

• the discount factor is γ̂

• the value distribution W is expressed as a sum of γ̂-discounted rewards

The benefits of identifying Gγ̂ as a Bellman operator are hugely relevant, since all results
previously presented of the Bellman operator T π of Distributional Reinforcement Learning
hold for our Log-Distributional DCOP operator.

Hence, we can at last prove the desired convergence of log-ratio distributions to some fixed
point in the general distributional setting when using the supremum-Wasserstein metric:

Lemma 4.4. Gγ̂ : P(R) → P(R) is a γ̂-contraction in d̄p.

Proof. Proof of Lemma 3 of [17]. □

Corollary 4.5. The process W k+1 := Gγ̂W
k, for any initial log-ratio distribution W 0, con-

verges to WC in d̄p.

Proof. Using Lemma 4.4, we conclude applying Banach’s fixed point theorem that Gγ̂ has a
unique fixed point WC . As we assume all moments are bounded, this is sufficient to conclude
that the sequence {W k} converges to WC in d̄p for 1 < p < ∞. □

Remark. Indirectly, convergence of ratio distributions has been also proven: any sequence of
log-distributional ratios generates a sequence of distributional ratios simply by their definition,
and the shown convergence of the former implies the convergence of the latter. However, as
the discounting implementation of operator Gγ̂ in the logarithmic setting does not exactly
mathematically correspond to that of Y D

γ̂ in the multiplicative case, there is no an exact
connection between these two operators, which means we do not have a clear convergence
result to show.

4.3 Categorical Log-Distributional DCOP-TD

The idea is to design a Categorical framework for Log-Distributional DCOP-TD analogous
to those of CDRL algorithms whose convergence has been proven. Hence, we will make use
of the following approximations:

• We consider the parametric family of categorical distributions over some fixed set of
equally-spaced supports w1 < · · · < wK :

P =

-
K!

i=1

piδwi

###p1, . . . , pK ≥ 0,
K!

k=1

pk = 1

.

29

4. Distributional Covariate Shift Approach Master Thesis

• For any state st+1 ∈ S, we assume ρ(Sµ
st+1

, Aµ
st,st+1

) can be computed, and we will denote
this value as simply ρ.

• Given a state st+1 ∈ S and its corresponding ρ, the Log-Distributional DCOP operator
Gγ̂ transforms the support {w1, . . . , wK} of log-ratio distributions by an affine shift map
flog(ρ),γ̂ : R → R defined by flog(ρ),γ̂(wi) := log(ρ) + γ̂wi. Hence, we can write

Gγ̂W (s) := (flog(ρ),γ̂)#W (s)

• We apply the heuristic projection operator ΠC defined in 2.16 so as to recover a ratio
distribution within P after applying the Log-Distributional DCOP operator Gγ̂.

• We denote by W µ ∈ P(R) the true log-ratio distribution which we aim to estimate.

In the following subsections we present the corresponding convergence results for Categor-
ical Log-Distributional DCOP-TD algorithms when using Tabular Representation and Linear
Function Approximation, respectively.

4.3.1 Tabular Representation

Let us first consider the simplest setting, where we assume we are able to store an approximate
parametrized log-ratio distribution for each state, and no stochastic approximation is required
during the learning process. Given the above categorical framework, the operator to be
analyzed is now ΠCGγ̂.

However, due to the fact that Gγ̂ is a Bellman operator, we can re-use the results of Section
2.4.1 for CDRL algorithms with Tabular Representation. This dramatically simplifies our
study, as we can directly show a strong convergence result in the supremum-Cramér distance:

Proposition 4.6. The operator ΠCGγ̂ is a
√
γ̂-contraction in ℓ̄2. Further, there is a unique

distribution function WC ∈ PS to which the process W k+1 := ΠcGγ̂W
k, given any initial

log-ratio distribution function W 0 ∈ P(R)S , converges in ℓ̄2 as k → ∞.

Proof. Proof of Proposition 2.3. □

Moreover, when we know a priori that log-ratio distributions lie in a certain interval, we
can easily bound the error of our estimate WC with respect to the true log-ratio distribution
W µ:

Proposition 4.7. Let WC be the limiting return distribution of Proposition 4.6. If for all
states their corresponding true log-ratio distribution W µ is supported on [w1, wK], then

ℓ̄2(WC ,W µ) ≤ 1

1− γ̂
max
1≤i≤K

(wi+1 − wi).

Proof. Proof of Proposition 2.4. □

This difference can be interpreted as the cost of using the parametrization P ; we observe
how W µ can be recovered by increasing the fineness of the support.

30

MAI 4.3. Categorical Log-Distributional DCOP-TD

4.3.2 Linear Function Approximation

In our second and last framework, we consider the use of linear function approximation to
estimate the parametrized log-ratio distribution of each state. We also make use of the
Categorical setting described above, and avoid any stochasticity in the following analysis.

We will introduce the same notation that was presented in Section 2.4.2 for CDRL with
Linear Function Approximation. Thus, the linear model redefines the approximated log-ratio
distributions W as mappings from states s ∈ S to vectors defined by a linear combination of
features:

WΘ(s) := Θ⊤φ(s) (4.8)

where φ(s) ∈ Rm is the feature vector at state s and Θ ∈ Rn×K represents the weight matrix.
In vector notation, we have WΘ = ΦΘ ∈ Rn×K , where Φ ∈ Rn×m is the feature matrix.

Remark. We recall the assumption that vector WΘ(s) ∈ RK is an estimation of a distribution
over the support {w1, . . . , wK}, although it might have negative components and it is not
necessarily normalized.

Again, all the theory developed in Section 2.4.2 with Linear Function Approximation
is valid for our Categorical Log-Distributional DCOP-TD due to the class equivalence of
operators Gγ̂ and T π, and the equivalence of the Categorical framework. So, in order not to
repeat step by step the study presented in that Section 2.4.2, we can directly show the final
convergence result that applies in our case:

Theorem 4.8. Let dµ the stationary distribution induced by policy µ. The process

W 0 := ΦΘ0, W k+1 := Π̂dµ,λ,ΦGγ̂W
k

converges to a set S such that, for any two W,W ′ ∈ S, there is a S-indexed vector of constants
α such that

W (s) = W ′(s) + α(s)eK .

If λ > 0, S consists of a single point WC which is the fixed point of the process. Moreover,
we can bound the error of this fixed point with respect to the true log-ratio distribution W µ by

ℓ2dµ,λ(W
C ,W µ) ≤ 1

1− γ̂
ℓ2dµ,λ(Πdµ,λ,ΦW

µ,W µ)− γ̂λ

1− γ̂
‖WC −W µ‖dµ,eKe⊤K

,

where the second terms measures the difference in mass between Ŵ and W µ.

We highlight the previous Theorem 4.8, as it provides us with a convergence result inde-
pendent of the value of γ̂ in the distributional setting with Linear Function Approximation; if
we recall Theorem 3.5 in the value-based setting, convergence was conditioned to a sufficiently
small value of the discounting γ̂.

Remark. Hence, we note that our log-distributional approach improves the theoretical con-
vergence guarantees of the process of learning the true ratio distributions. We can perform
the learning process in log space, where we can find the additive fixed point WC , and get our
estimate XC of the true ratio distribution as simply

XC := exp(WC)

31

5 Implementation

In the previous sections, the theoretical framework has been presented and analyzed in detail.
Our goal now is to describe how we have implemented that framework in practice.

First of all, we highlight the use of Dopamine[34], a research framework for fast proto-
typing of reinforcement learning algorithms, to implement our Distributional Covariate Shift
approach; all the development can be found at our Github repository. Basically, our baseline
is the RainbowAgent[18] already implemented in Dopamine with the C51 configuration file.
The resulting CovariateShiftAgent is contained in two files:

• The agent class in dopamine/agents/covariate_shift/covariate_shift_agent.py,
inheriting from rainbow_agent.RainbowAgent.

• The replay buffer in dopamine/replay_memory/cs_replay_buffer.py, inheriting from
prioritized_replay_buffer.WrappedPrioritizedReplayBuffer.

In addition, the configuration file

dopamine/agents/covariate_shift/configs/covariate_shift.gin

allows us to easily control all hyper-parameter values of the agent. For more technical infor-
mation about the implementation, we refer to the API Documentation of our repository, in
which we detail each module, class and function that conforms this agent.

In the following subsections, we will analyze the key points of our practical framework
at a higher level of abstraction. First, we will describe the function approximation that
we use to get our distribution estimates. In the following section, we give account of the
sampling process and the replay memory where we store them. Thirdly, we detail how we
dealt with the different approximations associated to distributional settings; this facilitates us
to finally present in the last two subsections the Categorical Distributional and Categorical
Log-Distributional DCOP-TD algorithms, respectively, that we have implemented in our
CovariateShiftAgent.

5.1 Non-linear Function Approximation

In our attempt to achieve the best experimental performance, we go beyond the defined the-
oretical framework by implementing a non-linear function approximation for getting ratio -or
log-ratio- distribution estimates. This is a choice that prevents us from having any conver-
gence guarantee, but it is supported by the outstanding experimental behaviour of C51[17],
which makes use of a non-linear neural network. In fact, in our implementation we augment
the original C51 network by adding an extra head, the distributional ratio model, to the final
convolutional layer, whose role is to predict the corresponding (log-)ratio distribution.

We can see in Figure 1 the model network architecture in detail when working with the
ALE environment[33]. Game frames are selected, grouped and preprocessed in the standard
way, generating inputs which consist of a 84 × 84 × 4 image. The following convolutional
layers are exactly as the ones already defined in the DQN implementation[5]:

• The first hidden layer convolves 32 filters of 8 × 8 with stride 4 with the input image
and applies a rectifier non-linearity -in particular, a ReLu[35].

32

https://github.com/gbg141/dopamine
https://github.com/gbg141/dopamine/blob/master/dopamine/agents/covariate_shift/covariate_shift_agent.py
https://github.com/gbg141/dopamine/blob/master/dopamine/replay_memory/cs_replay_buffer.py
https://github.com/gbg141/dopamine/blob/master/dopamine/agents/covariate_shift/configs/covariate_shift.gin
https://github.com/gbg141/dopamine/tree/master/docs

MAI 5.1. Non-linear Function Approximation

Figure 1: Visual representation of the Neural Network implemented in CovariateShiftAgent
working in the ALE environment.

• The second hidden layer convolves 64 filters of 4× 4 with stride 2, again followed by a
ReLu activation function.

• The third and last convolutional layer convolves 64 filters of 3 × 3 with stride 1 and
applies a ReLu rectifier as well, and the result is flattened.

At that point, our network is forked in two separate heads, each connected to the previous
flattened layer:

• On the one hand, we have the part responsible of predicting the Q value distributions,
which we call the Q model. Just as the original distributional RL models[17], the final
hidden layer is fully-connected and consists of 512 rectifier units, followed by a fully-
connected linear layer with | A | × N outputs, being |A| the number of actions of the
played game5 and N the number of fixed supports considered for the categorical Q
distributions. This is re-arranged in |A| groups of N outputs, and applying to each of
these groups of logits a Softmax layer we finally obtain the N probabilities for each
state-action pair.

• On the other hand, we have added the previously mentioned ratio model, which provides
us with estimates of the covariate shift (log-)ratio distributions. As in the Q model, the
final hidden layer is fully-connected and consists of 512 rectifier units. This is followed
by a fully-connected linear layer that produces as mani outputs as the number of atoms
M of the ratio parametric model. A final softmax layer transforms the resulting logits
into probabilities.

5The number of valid actions varied between 4 and 18 along the games of ALE environment.

33

5. Implementation Master Thesis

Finally, we notice that we work with double networks[11] -i.e. the processes of selection and
evaluation of the bootstrap action are decoupled, with online and target weights respectively;
this is a usual method in Deep Reinforcement Learning that addresses a natural overestimation
bias of Q-learning[36]. In our implementation, the update period for the target network is
controlled by target_update_period parameter, whose value is set to 8000 iterations just
like the RainbowAgent[18].

5.2 Replay Memory

The implemented replay memory in Dopamine[34] is responsible of storing past transitions of
the agent, acting as a windowed buffer from which training samples are drawn continuously.
Consequently, there is always some degree of off-polyceness during the learning process given
that the learned policy is being constantly updated.

In order to evaluate our model, however, we are interested in achieving a degree of off-
polyceness as high as possible; thus, we consider the very hard setting proposed for testing
the Discounted COP-TD algorithm[29], in which:

• We have a fixed behaviour policy µ, the uniformly random policy;

• At each step, the target policy π is the ε-greedy policy with respect to the predicted Q
estimates.

On ALE[33], this particular setup guarantees that the generated data is significantly different
from any learned policy, as we want to.

Taking the work of [29] as reference, to reweight sample transitions we have implemented a
prioritized replay memory[28] where priorities are simply covariate shift estimates. Nonethe-
less, this increases the risk of overfitting, since it reduces the effective size of the data set -those
samples unlikely under policy π, which might be the vast majority due to the randomness
of µ, end up mostly ignored; to compensate this effect, the replay_capacity is increased to
10M frames.

Authors of [29] also explain that stability issues arise when learning the ratio with prior-
itized sampling. To overcome this, at each training step two independent transition batches
are sampled from the replay buffer: prioritized for the value distribution, and uniform for the
covariate shift ones. In both cases, the batch_size is set to 32 in our experiments.

Last, but not least, we note that initial states cannot be updated through transition samples
as the training of the ratio distributions is done ’backwards’. In these cases, given that the
distribution of any initial state is policy-independent, their ratio is 1; in our implementation,
we take this into account by replacing the bootstrapping target with a Dirac delta centered
at 1.

5.3 Distributional Setting

We recall Section 2.3, where we described the approximation framework defined in [25] to
implement reproducible and scalable distributional-based RL algorithms. Besides the already
detailed use of a non-linear function approximation, it follows how we have dealt in practice
with each of the other key points of that framework:

34

MAI 5.3. Distributional Setting

Distribution Parametrisation

Just as we considered along the theoretical framework, we select the parametric family of
categorical distributions over some fixed set of supports z1 < · · · < zK :

P =

-
K!

i=1

piδzi

###p1, . . . , pK ≥ 0,
K!

k=1

pk = 1

.

The only difference is that our implementation allows to define supports which are not neces-
sarily equally-spaced; in fact, apart from linear divisions of the support, in our experiments
we have also taken into account exponential bins.

Stochastic Learning

Despite the convergence results have been obtained without stochasticity, in practice it is
difficult to find an example where it can be rejected. Hence, supported with the work done
in [25, 26] regarding stochastic updates, our implementation learns to predict covariate shift
ratio estimates through transition samples of the MDP.

In particular, the practical samples for the ratio model are simply of the form (st, at, st+1);
neither the immediate reward rt nor the next action at+1 are required. However, in order
to define the learning rule, the ratio of policies ρ(Sµ

st+1
, Aµ

st,st+1
) must be computed; in our

stochastic setting, given a transition (st, at, st+1), it is estimated as ρt := ρ(st, at). Since

• the behavioural policy µ is simply the uniformly random policy, i.e.

µ(at|st) =
1

|A| ∀a ∈ A;

• the target policy π is the ε-greedy policy with respect to the estimated state-action
q-values of the model, i.e.

πθ(at|st) =
-

(1− ε) + ε 1
|A| if at = arg maxaQθ(st, a)

ε 1
|A| otherwise

we can easily obtain a computable expression:

ρt =
πθ(at|st)
µ(at|st)

=

<
|A|(1− ε) + ε if at = arg maxaQθ(st, a)
ε otherwise (5.1)

Once we have the ratio computed for each sample, it is straightforward to define both
the stochastic Distributional DCOP operator Ŷ D

γ̂ and the stochastic Log-Distributional DCOP
operator Ĝγ̂, which modify the supports of ratio distributions and log ratio distributions,
respectively, according to the 1-step information contained in each sample.

Projection of Bellman Target Distribution

In order to recover a ratio distribution within P after applying the stochastic operator -either
Ŷ D
γ̂ or Ĝγ̂, depending on the case-, we also use the heuristic projection operator ΠC defined

in 2.16; in particular, we coded it extended to finite mixtures of Dirac measures:

ΠC

%
N!

i=1

piδyi

&
=

N!

i=1

piΠC(δyi)

35

5. Implementation Master Thesis

We note, however, that our implementation of the function project_distribution(. . .)6,
responsible of performing this projection ΠC , differs from the already implemented in Dopamine;
we have slightly modified it so as to allow non-equally spaced supports, thus enabling the op-
tion of running experiments with exponential bins as well.

Gradient Updates

Attending to what we have shown in our theoretical framework, defining a gradient update
based on a Cramér loss seem to be the most appropriate solution given that we have imple-
mented the Cramér projection ΠC . However, we finally decided to imitate the original C51
agent and perform a single step of gradient descent on the Kullback-Leibler divergence of the
predicted distribution from the target one with respect to the parameters of the prediction.

The reasons behind our decision are purely practical; despite there is no convergence
guarantee of C51 due to this KL divergence step, so far its experimental results[17] are much
better than those that strictly rely on the theoretical framework[26]. Hence, as we now seek
for the best performance possible of our Distributional Covariate Shift approach, we kind of
ignore that part of the theory and implement the KL gradient update for generating the new
estimates of our CovariateShiftAgent.

5.4 Categorical Distributional DCOP-TD

With all the main ingredients of our implementation detailed in previous sections, next we
summarize the steps that conform our distributional DCOP-TD algorithms. To begin with,
we show in Algorithm 2 the Categorical Distributional γ̂-Discounted COP-TD main process,
where

• {xK} is the set of atoms that define our categorical parametric family P

• we denote by θ and θ̄ the weights of the online and target networks, respectively;

• {pθt,K(s)} and {pθ̄t,K(s)} are, respectively, the set of probability outputs of the online
and target networks for a state s ∈ S at a training time step t.

• ε̂ ∈ [0, 1] comes from the definition of the ε-greedy policy πθ̄; in practice, however, it
can be controlled apart by an extra hyper-parameter (quotient_epsilon).

• (fa,b)# represents the application to each element of the support of an affine shift map
fa,b : R → R defined by fa,b(y) := a+by; in particular, note that Y D

γ̂ X(s) := (f·,γ̂ρ)#X(s)

6This function can be found in dopamine/agents/covariate_shift/covariate_shift_agent.py

36

https://github.com/gbg141/dopamine/blob/master/dopamine/agents/covariate_shift/covariate_shift_agent.py

MAI 5.4. Categorical Distributional DCOP-TD

Algorithm 2: Categorical Distributional DCOP-TD
Require: Estimates Xθt(s) =

5K
k=1 pθt,k(s)δxk

and Xθ̄t(s) =
5K

k=1 pθ̄t,k(s)δxk
for each

s ∈ S
Input: A sample transition (si, ai, si+1)

#Compute policy ratio
if at = arg maxaQθ̄(si, a) then

ρi ← |A|(1− ε̂) + ε̂
else

ρi ← ε̂/|A|
end if
#Compute distributional ratio target
,X∗(si+1) ← Y D

γ̂ Xθ̄t(si)

#Project target onto support
,Xt(si+1) ← ΠC

,X∗(si+1)
#Compute KL loss

Find gradient KL
3
,Xt(si+1)||Xθt(si+1)

4

Update online weights θt+1

#Update target network if required
θ̄t+1 ← θt+1 if t % target_update_period = 0 else θ̄t

Output: New estimates Xθt+1(s) =
5K

k=1 pθt+1,k(s)δxk
and Xθ̄t+1

(s) =
5K

k=1 pθ̄t+1,k(s)δxk

for each s ∈ S
Ratio estimates cθ̄t+1

(s) =
5K

k=1 pθ̄t+1,k(s)xk

37

5. Implementation Master Thesis

5.5 Categorical Log-Distributional DCOP-TD

Finally, we present in Algorithm 3 the sketch of our Categorical Log-Distributional DCOP-
TD algorithm. The observations made in previous Section apply here, where now {wK} is
the support and Gγ̂W (s) = (flog(ρ),γ̂)#W (s). In fact, as one can see, the steps are equivalent
to those of the multiplicative case.

Algorithm 3: Categorical Log-Distributional DCOP-TD
Require: Estimates Wθt(s) =

5K
k=1 pθt,k(s)δwk

and Wθ̄t(s) =
5K

k=1 pθ̄t,k(s)δwk
for each

s ∈ S
Input: A sample transition (si, ai, si+1)

#Compute the log policy ratio
if at = arg maxaQθ̄(si, a) then

log(ρi) ← log (|A|(1− ε̂) + ε̂)
else

log(ρi) ← (ε̂/|A|)
end if
#Compute distributional log-ratio target
=W∗(si+1) ← (flog(ρi),γ̂)#Wθ̄t(si)
#Project target onto support
=Wt(si+1) ← ΠC

=W∗(si+1)
#Compute KL loss

Find gradient KL
3
=Wt(si+1)||Wθt(si+1)

4

Update online weights θt+1

#Update target network if required
θ̄t+1 ← θt+1 if t % target_update_period = 0 else θ̄t

Output: New estimates Wθt+1(s) =
5K

k=1 pθt+1,k(s)δwk
and

Wθ̄t+1
(s) =

5K
k=1 pθ̄t+1,k(s)δwk

for each s ∈ S
Ratio estimates cθ̄t+1

(s) =
5K

k=1 pθ̄t+1,k(s) exp(wk)

We note that we can easily get covariate shift estimates -which we recall are used as
priorities for training the Q model- by exponentiating log-ratio distributions and taking its
mean; in practice, as the support is fixed, we simply compute the exponentiated support at
the beginning, and compute its weighted mean by the corresponding probabilities of log-ratio
distributions.

38

6 Evaluation of the Proposal

In this section we aim to evaluate our implementation by showing some experimental results
within ALE[33] which we recall it is an interface to Atari 2600 games; a detailed explanation
of this platform can be found in Appendix A.4. In order to help us with the analysis, we take
as reference the results achieved in [29] with the value-based DCOP-TD algorithm.

However, before presenting and detailing the experiments performed, we comment on the
practical limitations that we have faced when testing these RL algorithms. As one might
suspect, everything is about the associated computational cost: a single run of 100 iterations
on any game requires +5 days with a constant use of +60GB of RAM (due to the large replay
buffer) and a dedicated GPU7.

We were therefore constrained by the available resources when planning the set of exper-
iments. In particular, this prevented us from designing a systematic grid search so as to
select the hyper-parameter values of our distributional approach; instead, these values were
selected either by reusing the published values of previous works[17, 29], or by performing
an informal search on the game of Seaquest. We summarize in the following list the most
relevant selections:

• The number of atoms of the ratio parametric family P (ratio_num_atoms) is set to 51,
as in C51[17].

• The covariate shift interval definition of P is defined so that it is exponentially symmetric
with respect to the maximum and minimum possible values of the policies quotient ρt;
recalling its practical definition in Equation 5.1, we have

– ratio_cmin = εa

– ratio_cmin = (|A|(1− ε) + ε)a

being ε the effective quotient_epsilon and a the selected symmetric_exponent (in
our experiments, a = 2). Despite originally the interval was manually defined, we found
that enabling this kind of symmetric_range dramatically improved the performance8.

• The mentioned effective quotient_epsilon, which is used to compute the policy quo-
tients, is set to 0.5; theoretically, it should be equal to the epsilon_eval used for
defining the ε-greedy policy in the evaluation setting (which is 0.1), but in practice
incrementing it -i.e. reducing the variance of the updates- provided us with better
results.

• We use a discount factor γ̂ (ratio_discount_factor) of 0.97; in our tests, though, this
parameter did not seem to be critical.

• The weight loss of the ratio model (ratio_weight_loss) is 0.002, as in [29].

Bearing that practical setting in mind, in this section we first compare the experimental
results of both the multiplicative and the logarithmic versions of our distributional approach
on a single game (Seaquest). Then, we extend the analysis to three more games in the case of
the Categorical Log-Distributional DCOP-TD. Thirdly, we perform a qualitative evaluation
of the learned ratios at the end of the previous experiments. Finally, we provide some evidence
that the resulting covariate shift estimates actually represent an ’Off-policyness’ measure.

7In our case, a Nvidia GTX 1080 Ti.
8The idea is that, starting from a Dirac delta function centered at 1, the same number of max. and min.

updates can be applied, respectively, so that the resulting target distributions still lie in the interval.

39

6. Evaluation of the Proposal Master Thesis

6.1 Multiplicative vs. Additive Value Functions

Our first goal was to compare the Categorical Distributional DCOP-TD with the multiplica-
tive value function with the Categorical Log-Distributional version that exhibits an additive
one. Even though our actual implementation of both versions lack of theoretical convergence
guarantees, we recall that the Logarithmic approach showed a theoretically stronger conver-
gence behaviour with linear function approximation and the Crámer-based loss; we wanted
to see if this might translate into better performance in our practical setting.

In addition to that, we were also interested in comparing the results with those obtained
with the value-based DCOP-TD algorithm presented in [29], as well as with the performance
obtained when no covariate shift estimates are used as priorities for the Q model- we will
refer to it as the uncorrected case following the notation of [29].

Due to the previously commented hardware limitations, though, we restricted the analysis
to single game -Seaquest- with a maximum of 100 iterations; Figure 2 shows the attained
learning curves of the considered models.

Figure 2: Performance comparison of Categorical Distributional DCOP-TD -with both linear
and exponential bins- and its Categorical Log-Distributional counterpart. Trajectories have
been smoothed by applying an Exponential Moving Average, and straight lines represent
performances of the value-based DCOP-TD algorithm and its uncorrected version at 100
iterations, both extracted from [29].

As we can see in that Figure 2, similar performances are achieved by both versions; the
logarithmic approach seems to get a better trend at 100 iterations, but we do not find the
difference with respect the multiplicative case to be significant. Regarding the use of linear or
exponential bins in the Categorical Distributional DCOP-TD, there is no evidence that one
way behaves better than the other either.

However, it is interesting to note that all distributional-based algorithms clearly overpass
the uncorrected case, and that performances at 100 iterations are comparable -especially
the Log-Distributional Approach- to the DCOP-TD of [29], where the latter was exhaustively
fine-tuned. These results suggest that the ratios learned by our distributional models actually
help in the learning process.

40

MAI 6.2. Log-Distributional Approach

6.2 Log-Distributional Approach

Having observed the experimental results of the different distributional configurations on the
game of Seaquest, next we wanted to extend the study to other Atari2600 games. For doing
so, we consider the Categorical Log-Distributional DCOP-TD, our most innovative approach
with an associated additive value function.

In order to perform a comparison with the value-based DCOP-TD, we have selected three
more games -besides Seaquest- that were also analyzed in [29]: Breakout, Asterix and Pong.
Figure 3 show the resulting learning curves.

Figure 3: Performance of Categorical Log-Distributional DCOP-TD on four different games
within ALE. Straight lines represent performances of the value-based DCOP-TD algorithm
and its uncorrected version at 100 iterations, both extracted from [29].

As one can see, at 100 iterations our implementation attains a performance in Breakout
very similar to that of DCOP-TD in [29], and clearly outperforms the uncorrected case -just
like we noted on Seaquest. The results on Asterix are more difficult to interpret, as the
learning curve seems to lie just between the DCOP-TD and the uncorrected references, which
in this case are quite close to each other.

However, what is also evident is that our Log-Approach obtained poor results on the game
of Pong, where even the uncorrected case achieved a better performance. We suspect that
this behaviour might be improved by doing a more careful selection of the hyper-parameter
configuration.

In general, though, the results still suggest that the use of our log-distributional approach
is potentially beneficial to the learning process when dealing with off-policy data.

41

6. Evaluation of the Proposal Master Thesis

6.3 Qualitative Evaluation of the Learned Ratios

In addition to the previous experiments, we were interested in qualitatively assessing the
learned covariate shift estimates, and for doing so we followed the experimental design pro-
vided in [29]: we take 100.000 samples drawn from the random behaviour policy on a certain
game, and select among them the top and bottom states according to the ratio (c) predicted
by the previously trained agents.

We recall that a covariate shift estimate greater than 1 means that the network believes
the state is more likely under the target policy π than under the behaviour policy µ, whereas
c < 1 is the other way around. Hence, given that π results in a much more successful policy
than µ at the considered stages of the learning process, we should expect to find larger ratios
associated with good moves, and lower ratios to bad ones.

So as to facilitate the reasoning of how good or bad are the selected frames, we present
the results on the game of Breakout; not only it is easily interpretable, but moreover, as we
showed in the previous section, on this game our trained Log-Distributional agent attained
a very good performance. Hence, Figures 4 and 5 show the top 16 frames with greater and
lower predicted ratio, respectively.

Qualitatively speaking, one can observe that frames with highest covariate shift estimates
correspond to better contexts than those with the lowest, as the agent is either about to
return the ball or failing to give it back for little. In contrast to that, frames with the lowest c
predictions match clearly with situations where the ball has not been returned back; in fact,
in most cases we can not even see the ball, meaning that the ’goal’ had been already scored.

Therefore, by observing this clear trend we conclude that our distributional model is ac-
tually learning to distinguish between likely and unlikely states under policies π and µ, just
as we would like to. As it was stated in [29], this might be particularly significant given the
relative scarcity of off-policy methods of this kind in deep reinforcement learning.

42

MAI 6.3. Qualitative Evaluation of the Learned Ratios

Figure 4: Breakout frames with the highest c value predictions among the 100.000 samples
generated by the random behaviour policy µ.

43

6. Evaluation of the Proposal Master Thesis

Figure 5: Breakout frames with the lowest c value predictions among the 100.000 samples
generated by the random behaviour policy µ.

44

MAI 6.4. Measuring Off-policy Degree

6.4 Measuring Off-policy Degree

So far, in all experiments we have considered the extreme case of a fixed random behaviour
policy µ, which clearly generates constantly great amounts of off-policy data with respect to
the target policy π. However, in more general situations we might find behaviour policies
that are periodically updated, and whose strategies to select an action may be much similar
to those of the target policy.

With this idea in mind, we finally designed an additional experiment to check whether the
learned ratios of our model are also sensitive to different degrees of Off-policy data, as they
should be. For doing so, we again use a previously trained Log-Distributional agent, in this
case on the game of Seaquest. The setup is summarized as follows:

• We only train the ratio head of the agent deep network (recall Figure 1), considering a
fixed Q model. In particular, note that this implies fixing the target policy π, defined
as an ε-greedy policy (with ε = 0.1) with respect to the maximum Q value predictions.

• We reset the replay buffer, and for the first million training frames we set µ = π, so the
agent only sees on-policy data.

• At 1M frames, we switch to a behaviour policy which is able to generate some amount
of off-policy data; for that, we also define µ as an ε-greedy policy with respect to the Q
predictions, but with ε > 0.1.

• The ratio model is trained for another 5M frames, and during this process more and
more off-policy samples are stored in the replay buffer.

Note that, in this setting, we are facing for the first time a multiple policy data problem; in
order to deal with this, we needed to store the probability of taking each action of the agent
trajectory (i.e µ(at|st) of each sample (st, at, st+1)) to then compute the policy quotient ρt at
each update in a proper way.

One way of evaluating the results of this experiment would be following the evolution of the
predicted ratio values along the whole process, but to fully capture what might be happening
to them we would probably need to keep track of their maximum, minimum and mean values.
Instead, we came up with another measurement that might directly quantify the off-policy
degree from the ratio estimates.

It is straightforward to argue that a certain covariate shift estimate c = k, with k > 1,
indicates that its associated state is as off-policy as another state whose ratio is 1/k. Bearing
that in mind, we define the ’Off-policyness’ measure of a state as its covariate shift if it is
greater or equal than 1, or as the reciprocal of that ratio otherwise. We strongly believe that
keeping track of this single new magnitude would be enough to fully understand the results
of the described experiment.

This is precisely what it is shown in Figure 6, where the batch average ’Off-policyness’ is
represented along four different experiments, each one switching to a different ε-greedy be-
haviour policy µ at 1M frames. In particular, note that with ε = 1 we are actually considering
the random policy.

45

6. Evaluation of the Proposal Master Thesis

Figure 6: Resulting ’Off-Policyness’ curves considering 4 different ε-greedy behaviour policies
to switch at 1M frames. Trajectories have been smoothed by applying an Exponential Moving
Average.

We first want to emphasize the observed behaviour during the first million frames: as
one should expect, we rapidly end up with an ’Off-policyness’ convergence to 1, and hence
covariate shift ratio estimations of 1, which simply means that we are dealing exclusively with
on-policy data.

Then, starting at 1M frames, it is interesting how the gap on ’Off-policyness’, produced
by the switch of the behaviour policy, is related to ε values: the higher the ε considered, the
steeper the gap obtained. In fact, we argue this is also the desired behaviour: as we increase
ε, the random component of µ arises, which makes its action selection strategy to differ more
and more from the that of the target policy π, so the generated samples are potentially more
off-policy.

After the abrupt gap, one can see how the average ’Off-policyness’ slowly decreases in all
four cases. Since we are only training the ratio model, and the expected policy quotient is 1
even with off-policy data, this mild convergence to 1 could be also hoped.

To sum up, we conclude that the results of this experiment provide some empirical evidence
that the learned ratios of our model are able to measure, to some extent, the off-policy degree
of the data that we are using.

46

7 Conclusions

We have revisited some fundamental theoretical results of Distributional Reinforcement Lear-
ning[17] when using a categorical parametrization for return distributions[25, 26]. This review,
which brings forth the connection between distributional operators and mixture distributions,
includes a detailed analysis of the convergence guarantees of distributional Bellman updates
when combined with linear function approximation.

On the other hand, we presented a thorough inspection of the Covariate Shift method[27,
29] designed to deal with Off-Policy Learning[1]. As we observed, this approach proposed a
multiplicative TD-based update rule for learning the ratios between the target and behaviour
stationary distributions which, together with linear function approximation, provides with
provable -but not strong- convergence guarantees.

Motivated by the interesting new properties of distributional-based RL, which derive from
the aforementioned connection with mixtures, we introduced a theoretical framework for
learning covariate shift ratios from a distributional perspective. Although expected, it was
still surprising to find out that such a distributional approach allows to project the ratio
learning process to the log space, moving from a multiplicative update rule to an additive
one. We can then look for the additive distributional fixed point in that log space, so that
exponentiating it leads to the correct covariate shift ratio distribution.

More precisely, we observed that the learning process of log-distributional covariate shift
ratios can be actually described by a distributional Bellman operator. In particular, this
let us make use of the -already reviewed- theoretical results of Categorical Distributional
RL[25, 26] in order to define a Categorical Log-Distributional Covariate Shift approach with
better convergence guarantees than previous value-based methods[27, 29].

For assessing this new distributional perspective applied to covariate shift ratios, we im-
plemented two different solutions: an algorithm that learns the ratio distributions using
multiplicative updates (Categorical Distributional DCOP-TD), and other that performs the
learning in the log space (Categorical Log-Distributional DCOP-TD).

Despite more experiments need to be run, still preliminary results on a subset of Atari
2600 games demonstrates the practicality of the learned covariate shift ratio distributions
in an off-policy setting. In practice, we do not observe any significant deviation between
learning with an additive or a multiplicative value function, suggesting that differences in
their convergence behaviour might be mainly a theoretical discussion. When comparing our
distributional approach to the value-based DCOP-TD[29], our reference in the extreme setting
we are dealing with, similar performances are attained even with the limited fine-tuning of our
model. In addition, we provide an empirical proof that the learned covariate shift estimates
are sensitive to the off-policy degree of the data seen by the agent.

Future Work

Our developed theoretical framework for designing a distributional covariate shift approach
can be easily broaden to any other context where learning is ruled by a non-additive value
function, and we believe its use might be specially relevant in those cases that present insta-
bility issues. Related to that, it would be interesting to look for some practical case where
the theoretical guarantees of the Categorical Log-Distributional Approach actually make a
difference with respect to learning from its original multiplicative update rule. Finally, ex-
tending our whole implementation to deal with the more general case where the agent might
learn from multiple-policy data would also be an exciting avenue.

47

Appendix

A.1 Contraction Mappings

Contraction Mappings are key for our theoretical framework to be understood, as they allow
us to assess the convergence guarantees of the different involved algorithms. In this section, we
define what a Contraction Mapping is, as well as present the Contraction Mapping Theorem
-better known as the Banach Fixed-point Theorem-, which is in fact the method that we apply
to construct the solution of convergence results.

Let us begin with the definition:

Definition 1. Consider a metric space (X, d). A mapping T : X → X is a contraction
mapping, or contraction, if there exists a constant c ∈ (0, 1) such that, for all x, y ∈ X,

d (T (x), T (y)) ≤ c · d(x, y) (A.1)

In the limit where A.1 holds with c = 1, we denote T as a non-expansion mapping, or simply
non-expansion.

The idea, hence, is that contractions perform uniformly continuous mappings of the points of
the considered metric space so that they end up closer together.

Notation. To simplify the notation, the parenthesis around the argument of a map T are
usually omitted (i.e. we write Tx instead of T (x)). Moreover, when applying the map
repeated times to the same point x ∈ X, we denote the n-th iterate of T as T n.

For any mapping T : X → X, we recall that a point x ∈ X such that

Tx = x (A.2)

is called a fixed point of T . Precisely, the interest of contractions is intimately related to the
properties of their fixed points, which are summarized in the mentioned Contraction Mapping
Theorem. However, this theorem requires the metric space considered to be complete, which
in turn involves the notion of Cauchy sequences :

Definition 2. A sequence {xn} in a metric space (X, d) is a Cauchy sequence if for every
ε > 0, there exists some n0 ∈ N such that

d(xn, xm) < ε

for all n,m ≥ n0.

Definition 3. A metric space (X, d) is complete if every Cauchy sequence in it converges.

Now we have all ingredients to present the theorem, widely known also as the Banach
Fixed-point Theorem, which demonstrates the existence and uniqueness of fixed points of
contraction mappings on complete metric spaces. We note that, in general, the condition
c < 1 is needed for proving that exists the fixed point and it is unique.

Theorem A.1. Let T : X → X be a contraction mapping on a complete metric space (X, d).
Then, T has exactly one fixed point x ∈ X.

48

MAI A.1. Contraction Mappings

Proof. The proof explicitly constructs a sequence converging to the fixed point.

Consider any point x0 ∈ X; we define a sequence {xn} in X by

xn+1 = Txn

for n ≥ 0. In particular, we have xn = T nx0.

We first prove that {xn} is a Cauchy sequence. Considering n ≥ m ≥ 1, and the contraction
definition A.1, we have

d(xn, xm) = d(T nxo, T
mx0)

≤ cmd(T n−mx0, x0)

By the triangle inequality, we can follow the expansion as

d(xn, xm) ≤ cm
n−m−1!

i=0

d(T n−m−kx0, T
n−m−k−1x0)

≤ cm

%
n−m−1!

i=0

ck

&
d(Tx0, x0)

≤ cm

% ∞!

i=0

ck

&
d(x1, x0)

≤
6

cm

1− c

7
d(x1, x0)

From the previous expression it is straightforward that {xn} is Cauchy, and since the metric
space is complete, it converges to a limit point x ∈ X. The fact that this limit x is a fixed
point can be easily derived from the continuity of T :

Tx = T lim
n→∞

xn = lim
n→∞

Txn = lim
n→∞

xn+1 = x

Finally, we prove the uniqueness of x. Suppose x and y are two fixed points; hence,

0 ≤ d(x, y) = d(Tx, Ty) ≤ c · d(x, y)

But as c ∈ (0, 1), we have d(x, y) = 0, so x = y. □

We highlight that the result of Theorem A.1 do not depend on the metric d: for any metric
on X that makes X complete and T a contraction on X, the existence and uniqueness of a
fixed point is guaranteed.

49

Appendix Master Thesis

A.2 Mixture Distributions

In this section we introduce Mixture Distributions, whose concept and properties are relevant
for understanding and developing the distributional theoretical framework presented in this
document.

Remark. All random variables presented in this section are considered to be real-valued, i.e.
their measurable space is E = R.

Definition 4. A random variable Y is a mixture distribution if it is derived from a collection
of other random variables {Xi}, i ∈ {1, . . . , N}, (named mixture components) in such a way
that the combination of these parent distributions is driven according to a certain distribution
A (called mixing distribution). A encapsulates the mixture weights αi ∼ A, i ∈ {1, . . . , N},
which represent the probabilities of each individual mixture component Xi.

The mixture distribution Y can be defined in terms of its density function fY , which is
the resulting α-convex combination of the mixture components’ density functions:

fY (x) =
N!

i=1

αifXi
(x)

Mixture Distributions appear in a natural way when dealing with distributional versions
of Bellman equations, and are of special interest due to some interesting properties:

Property 1. The expectation of the mixture distribution Y is the convex combination of
expectations of each mixture component:

E[Y] =

+ ∞

−∞
xfY (x)dx =

+ ∞

−∞
x

N!

i=1

αifXi
(x)dx

=
N!

i=1

αi

+ ∞

−∞
xfXi

(x)dx

=
N!

i=1

αi E[Xi]

(A.3)

Property 2. Let be Z = g(Y), being Y a mixture distribution with mixture components {Xi},
i ∈ {1, . . . , N}, and g a monotonic, invertible and differentiable function. Then

fZ(x) = fY (g
−1(x))

####
dg−1(x)

dx

####

=
!

i

αifXi
(g−1(x))

####
dg−1(x)

dx

####

=
!

i

αifg(Xi)(x)

(A.4)

We emphasize the relevance of Property 2 in proposing our Categorical Log-Distributional
approach (Section 6.2). In distributional TD learning, the distribution mixture plays the role
of the expectation in expected TD. But while E[g(x)] ∕= g(E[x]), we can interchange mixtures
and functions. This allows us to circumvent Jensen’s inequalities.

50

MAI A.3. Measures over Distributions

A.3 Measures over Distributions

In this section we present the definitions of the measures and metrics over distributions that
are used at some point of our theoretical framework.

A.3.1 Kullback-Leibler Divergence

Definition 5. Let be ν1, ν2 ∈ P(R) two probability distributions. The Kullback-Leibler
(KL) divergence of ν1 from ν2 is defined as

DKL(ν1, ν2) =

+ ∞

−∞
ν1(x) log

ν1(x)

ν2(x)
dx

A.3.2 Wasserstein

Definition 6. The Wasserstein distance dp, for p ∈ [1,∞), between two distributions ν1, ν2 ∈
P(R), with cumulative distribution functions Fν1 , Fν2 respectively, can be defined by:

dp(ν1, ν2) =

6+

R
|F−1

ν1
(u)− F−1

ν2
(u)|pdu

71/p

Further, the supremum-Wasserstein metric d̄p is defined between two value distribution func-
tions Z,Z ′ ∈ P(R)S by

d̄p(Z,Z
′) = sup

s∈S
dp(Z(s), Z

′(s))

A.3.3 Cramér

Definition 7. The Cramér distance ℓ2 between two distributions ν1, ν2 ∈ P(R), with cumu-
lative distribution functions Fν1 , Fν2 respectively, is defined by:

ℓ2(ν1, ν2) =

6+

R
(Fν1(x)− Fν2(x))

2dx

71/2

Further, for any pair of value distribution functions Z,Z ′ ∈ P(R)S :

• the supremum-Cramér metric ℓ̄2 is defined as

ℓ̄2(Z,Z ′) = sup
s∈S

ℓ2(Z(s), Z ′(s)).

• Given a vector ξ ∈ RS , the ξ-weighted Cramér metric ℓ2ξ is defined as

ℓ2ξ(Z,Z
′) :=

!

s∈S

ξ(s)ℓ2(Z(s), Z ′(s)).

Notation. We abuse notation and denote by ‖ · ‖2ξ the ξ-weighted Cramér norm, as we do
with the weighted L2 norm.

51

Appendix Master Thesis

A.4 Use of the Arcade Learning Environment

The Arcade Learning Environment (ALE), published in 2013[33], is a software framework for
interfacing with emulated Atari 2600 game environments. According to the authors, the idea
was to define a new challenging platform for empirically assessing agents designed for general
competency. We present its technical description as follows:

"ALE is built on top of Stella9, an open-source Atari 2600 emulator. It allows the user
to interface with the Atari 2600 by receiving joystick motions, sending screen and/or RAM
information, and emulating the platform. ALE also provides a game-handling layer which
transforms each game into a standard reinforcement learning problem by identifying the ac-
cumulated score and whether the game has ended. By default, each observation consists of
a single game screen (frame): a 2D array of 7-bit pixels, 160 pixels wide by 210 pixels high.
The action space consists of the 18 discrete actions defined by the joystick controller, but the
game-handling layer also specifies the minimal set of actions needed to play a particular game.
When running in real-time, the simulator generates 60 frames per second, and at full speed
emulates up to 6000 frames per second. The reward at each time-step is defined on a game by
game basis, typically by taking the difference in score or points between frames. An episode
begins on the first frame after a reset command is issued, and terminates when the game
ends or after a predefined number of frames. The user therefore has access to several dozen
games through a single common interface, and adding support for new games is relatively
straightforward." [33]

In our experiments, games are running in real-time (60Hz), just as a human would do.
However, directly using Atari 2600 raw coloured frames of 210 × 160 pixels is usually pro-
hibitive in terms of computation and memory, as it happens in our particular case. For RL
agents to deal with that, Dopamine implements by default the preprocessing process unit
introduced in [5], whose application has become standard in the community:

"First, to encode a single frame we take the maximum value for each pixel colour value
over the frame being encoded and the previous frame. This was necessary to remove flickering
that is present in games where some objects appear only in even frames while other objects
appear only in odd frames, an artefact caused by the limited number of sprites Atari 2600 can
display at once. Second, we then extract the Y channel, also known as luminance, from the
RGB frame and rescale it to 84× 84. In practice, this preprocessing is applied to the m most
recent frames and stacks them to produce the input to the RL model."

Hence, considering the typical choice of m = 4, the effective states -and thus the network
inputs- of our model end up having a size of 84× 84× 4. In addition to that, we also use the
simple frame-skipping technique presented in [37] (already implemented in Dopamine as well);
this makes the agent see and select actions on every k-th frame, being its last action repeated
on the skipped ones. In particular, as selecting an action entails much more computation
than simply running the emulator one step forward, this technique speeds up the runtime.
We also use k = 4 in our experiments.

Finally, among all available games through the ALE, we select a small subset of four for
the evaluation of our model:

• Seaquest: It is a submarine combat game in which the player controls a water vessel
and must avoid, collect, or destroy various objects at different levels of depth.

9https://stella-emu.github.io

52

https://stella-emu.github.io

MAI A.4. Use of the Arcade Learning Environment

• Breakout: In the game, a layer of bricks lines the top third of the screen. A ball travels
across the screen, bouncing off the top and side walls of the screen. When a brick is
hit, the ball bounces away and the brick is destroyed. The player loses a turn when the
ball touches the bottom of the screen. To prevent this from happening, the player has
a movable paddle to bounce the ball upward, keeping it in play.

• Asterix: The player guides tornado-like object between the stage lines in order to eat
hamburgers and avoid the dynamites. The game does not use any buttons and the
difficulty increases by increasing the speed of the objects on screen. As the game
progresses, the burgers may change into other edible or drinkable objects such as beer
kegs, hot dogs, etc.

• Pong: The aim is to defeat an opponent in a simulated table-tennis game by earning a
higher score.

It is important to note that, as the scale of scores varies from game to game, during the
training process all positive rewards are clipped at 1, all negative rewards at −1, and 0
rewards are left unchanged; this helps us using the same hyper-parameter configuration in
all games. Moreover, for games where there is a life counter, the number of lives left is also
managed to mark the end of an episode.

53

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[2] E. Thorndike, Animal intelligence: Experimental studies. Routledge, 2017.

[3] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of prediction and reward,”
Science, vol. 275, no. 5306, pp. 1593–1599, 1997.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming, vol. 5. Athena Scien-
tific Belmont, MA, 1996.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[6] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li, “Drn: A deep
reinforcement learning framework for news recommendation,” in Proceedings of the 2018
World Wide Web Conference, pp. 167–176, International World Wide Web Conferences
Steering Committee, 2018.

[7] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with deep
reinforcement learning,” in Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, pp. 50–56, ACM, 2016.

[8] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-agent
system for network traffic signal control,” IET Intelligent Transport Systems, vol. 4, no. 2,
pp. 128–135, 2010.

[9] Z. Zhou, X. Li, and R. N. Zare, “Optimizing chemical reactions with deep reinforcement
learning,” ACS central science, vol. 3, no. 12, pp. 1337–1344, 2017.

[10] X. Bu, J. Rao, and C.-Z. Xu, “A reinforcement learning approach to online web sys-
tems auto-configuration,” in 2009 29th IEEE International Conference on Distributed
Computing Systems, pp. 2–11, IEEE, 2009.

[11] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-
learning,” in Thirtieth AAAI conference on artificial intelligence, 2016.

[12] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” arXiv
preprint arXiv:1611.05397, 2016.

[13] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih, “Combining policy gradient
and q-learning,” arXiv preprint arXiv:1611.01626, 2016.

[14] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-
tional conference on machine learning, pp. 1928–1937, 2016.

[15] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, et al., “Noisy networks for exploration,” arXiv
preprint arXiv:1706.10295, 2017.

54

MAI REFERENCES

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[17] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on reinforce-
ment learning,” in Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, pp. 449–458, JMLR.org, 2017.

[18] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforce-
ment learning,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[19] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, A. Muldal,
N. Heess, and T. Lillicrap, “Distributed distributional deterministic policy gradients,”
arXiv preprint arXiv:1804.08617, 2018.

[20] R. Dearden, N. Friedman, and S. Russell, “Bayesian q-learning,” in Aaai/iaai, pp. 761–
768, 1998.

[21] M. G. Azar, R. Munos, and B. Kappen, “On the sample complexity of reinforcement
learning with a generative model,” arXiv preprint arXiv:1206.6461, 2012.

[22] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional reinforce-
ment learning with quantile regression,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[23] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile networks for
distributional reinforcement learning,” arXiv preprint arXiv:1806.06923, 2018.

[24] C. Lyle, M. G. Bellemare, and P. S. Castro, “A comparative analysis of expected and dis-
tributional reinforcement learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 4504–4511, 2019.

[25] M. Rowland, M. G. Bellemare, W. Dabney, R. Munos, and Y. W. Teh, “An analysis
of categorical distributional reinforcement learning,” arXiv preprint arXiv:1802.08163,
2018.

[26] M. G. Bellemare, N. L. Roux, P. S. Castro, and S. Moitra, “Distributional reinforcement
learning with linear function approximation,” arXiv preprint arXiv:1902.03149, 2019.

[27] A. Hallak and S. Mannor, “Consistent on-line off-policy evaluation,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70, pp. 1372–1383, JMLR.
org, 2017.

[28] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv
preprint arXiv:1511.05952, 2015.

[29] C. Gelada and M. G. Bellemare, “Off-policy deep reinforcement learning by bootstrapping
the covariate shift,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 3647–3655, 2019.

[30] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer Science
& Business Media, 2012.

55

References Master Thesis

[31] J. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with function
approximation,” Technical Report LIDS-P-2322. Laboratory for Information and Deci-
sion Systems, Massachusetts Institute of Technology, Tech. Rep., 1996.

[32] S. C. Jaquette et al., “Markov decision processes with a new optimality criterion: Discrete
time,” The Annals of Statistics, vol. 1, no. 3, pp. 496–505, 1973.

[33] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning envi-
ronment: An evaluation platform for general agents,” Journal of Artificial Intelligence
Research, vol. 47, pp. 253–279, 2013.

[34] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare, “Dopamine: A
research framework for deep reinforcement learning,” arXiv preprint arXiv:1812.06110,
2018.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th international conference on machine learning (ICML-
10), pp. 807–814, 2010.

[36] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing Sys-
tems, pp. 2613–2621, 2010.

[37] M. G. Bellemare, J. Veness, and M. Bowling, “Investigating contingency awareness using
atari 2600 games,” in Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

56

